Repository of Research and Investigative Information

Repository of Research and Investigative Information

Shahid Sadoughi University of Medical Sciences

Thalidomide attenuates development of morphine dependence in mice by inhibiting PI3K/Akt and nitric oxide signaling pathways

(2018) Thalidomide attenuates development of morphine dependence in mice by inhibiting PI3K/Akt and nitric oxide signaling pathways. Progress in Neuro-Psychopharmacology & Biological Psychiatry. pp. 39-48. ISSN 0278-5846

Full text not available from this repository.

Official URL: http://apps.webofknowledge.com/InboundService.do?F...

Abstract

Morphine dependence and the subsequent withdrawal syndrome restrict its clinical use in management of chronic pain. The precise mechanism for the development of dependence is still elusive. Thalidomide is a glutamic acid derivative, recently has been reconsidered for its clinical use due to elucidation of different clinical effects. Phosphoinositide 3-kinase (PI3K) is an intracellular transducer enzyme which activates Akt which in turns increases the level of nitric oxide. It is well established that elevated levels of nitric oxide has a pivotal role in the development of morphine dependence. In the present study, we aimed to explore the effect of thalidomide on the development of morphine dependence targeting PI3K/Akt (PKB) and nitric oxide (NO) pathways. Male NMRI mice and human glioblastoma T98G cell line were used to study the effect of thalidomide on morphine dependence. In both models the consequent effect of thalidomide on PI3K/Akt and/or NO signaling in morphine dependence was determined. Thalidomide alone or in combination with PI3K inhibitor, Akt inhibitor or nitric oxide synthase (NOS) inhibitors significantly reduced naloxone induced withdrawal signs in morphine dependent mice. Also, the levels of nitrite in hippocampus of morphine dependent mice were significantly reduced by thalidomide in compared to vehicle treated morphine dependent mice. In T98G human glioblastoma cells, thalidomide alone or in combination with PI3K and Akt inhibitors significantly reduced iNOS expression in comparison to the morphine treated cells. Also, morphine-induced p-Akt was suppressed when T98G cells were pretreated with thalidomide. Our results suggest that morphine induces Akt, which has a crucial role in the induction of NOS activity, leading to morphine dependence. Moreover, these data indicate that thalidomide attenuates the development of morphine dependence in vivo and in vitro by inhibition of PI3K/Akt and nitric oxide signaling pathways.

Item Type: Article
Keywords: Thalidomide PI3K/Akt Morphine Physical dependence Mice T98G-cellglioblastoma cells opioid withdrawal syndrome synthase activity mouse model tolerance cell akt expression phosphorylation neuroblastoma stimulation Neurosciences & Neurology Pharmacology & Pharmacy Psychiatry
Page Range: pp. 39-48
Journal or Publication Title: Progress in Neuro-Psychopharmacology & Biological Psychiatry
Journal Index: WoS
Volume: 82
Identification Number: https://doi.org/10.1016/j.pnpbp.2017.12.002
ISSN: 0278-5846
Depositing User: Mr mahdi sharifi
URI: http://eprints.ssu.ac.ir/id/eprint/30022

Actions (login required)

View Item View Item