Repository of Research and Investigative Information

Repository of Research and Investigative Information

Shahid Sadoughi University of Medical Sciences

Design, synthesis, in vivo and in vitro studies of 1,2,3,4-tetrahydro-9H-carbazole derivatives, highly selective and potent butyrylcholinesterase inhibitors.

(2019) Design, synthesis, in vivo and in vitro studies of 1,2,3,4-tetrahydro-9H-carbazole derivatives, highly selective and potent butyrylcholinesterase inhibitors. Molecular diversity. ISSN 1573-501X

Full text not available from this repository.

Abstract

Inhibition of butyrylcholinesterase (BChE) might be a useful therapeutic target for Alzheimer's disease (AD). A new series of 1,2,3,4-tetrahydro-9H-carbazole derivatives were designed synthesized and evaluated as BChE inhibitors. While all of the derivatives have shown for AChE IC values below the detectable limit (> 100 µM), they were selective potent BChE inhibitors. 1-(2-(6-fluoro-1,2,3,4-tetrahydro-9H-carbazole-9-yl)ethyl)piperidin-1-ium chloride (15 g) had the most potent anti-BChE activity (IC value = 0.11 μM), the highest BChE selectivity and mixed-type inhibition. Pharmacokinetic properties were accordant to Lipinski rule and compound 15g demonstrated neuroprotective and inhibition of β-secretase (BACE1) activities. Furthermore, in vivo study of compound 15g in Morris water maze task has confirmed memory improvement in scopolamine-induced impairment. All results suggest that new sets of potent selective inhibitors of BChE have a therapeutic potential for the treatment of AD. A new series of 1,2,3,4-tetrahydro-9H-carbazole derivatives were designed synthesized and evaluated as BChE inhibitors. While all of the derivatives have shown for AChE IC50 values below the detectable limit, they were selective potent BChE inhibitors. Compound 15g had the most potent anti-BChE activity. All results suggest that new sets of potent selective inhibitors of BChE have a therapeutic potential for the treatment of AD.

Item Type: Article
Journal or Publication Title: Molecular diversity
ISSN: 1573-501X
Depositing User: ms soheila Bazm
URI: http://eprints.ssu.ac.ir/id/eprint/10906

Actions (login required)

View Item View Item