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Abstract Exploring predictive QSAR models for dopa-

mine catechol structures could be used in designing more

potent ligands. In this study, efforts were taken to find out

the most important molecular features responsible for the

biological activity of catechol structures. All 2D descrip-

tors of Dragon including constitutional, topological,

molecular walk counts, BCUT descriptors, Galvez topo-

logical, 2D autocorrelations, functional groups, atom-cen-

tred fragments, empirical descriptors and properties were

calculated for the structures. Two non-linear modelling

methods (PC-LS-SVM and PC-ANFIS) were used and

compared in this QSAR study. The results revealed the

more predictive ability of PC-LS-SVM in the QSAR

analysis of the compounds with catechol substructure. The

roles of topological properties and number of hydrogen

bond donors group as molecular features responsible for

the activity of the compounds were discussed. The obtained

QSAR models can be used in future studies of drug

development for human dopamine D2 receptor.

Keywords Catechol structures � Human dopamine D2

receptor � Quantitative structure–activity relationship

Introduction

Dopamine neurotransmission plays an important role in

several sensory processing functions such as novelty

detection, attention, memory formation and coding of

rewarding stimuli (Spuhler and Hauri 2013; Narendran

et al. 2014). Dopaminergic pathways are also involved in

the manifestation of CNS pathologies including Parkin-

son’s disease, schizophrenia and substance abuse (Tinsley

et al. 2009).

The cell-borne receptors of dopamine can be classified

into two pharmacologic families (D1 and D2-like) which

are encoded by at least five genes (Levey et al. 1993;

Flisikowski et al. 2009). The D1-like receptors stimulate

the activity of adenylyl cyclase and their pharmacological

functions from known ligands which are more or less

identical. The D2-like receptors, i.e. D2, D3 and D4

receptors have long third intracellular loops with short

C-terminal tails and inhibit adenylyl cyclase (Mizuta et al.

2013; Plouffe and Tiberi 2013).

From a pharmacological point of view, the D2-like

family, including D2, D3 and D4, appears to be involved in

schizophrenia (Dzirasa et al. 2006). The antagonists of D2-

like dopamine receptor are therefore being used in the

treatment of schizophrenia (Dzirasa et al. 2006).

It is therefore of great importance to achieve a more com-

prehensive view of the structural features which are respon-

sible for the activity of these types of compounds (Yeagle and

Albert 2007; Tinsley et al. 2009). The results of modelling

research in this area could provide a rational pattern for the

interaction of these compounds with D2 receptor. The

obtained results are useful in design and synthesis of more

potent pharmaceutical agents in future studies. Quantitative

structure–activity relationship (QSAR) can extend our
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knowledgeabout the roleofmolecular features responsible for

the activity of dopamine antagonists (Yeagle and Albert

2007). The common approaches used in QSAR studies are

normally based on linear methods such as Multiple Linear

Regression (MLR) and Principal Component Regression or

non-linear methods like support vector machines, Neural

networks and Fuzzy mappings (Buyukbingol et al. 2007;

Afiuni-ZadehandAzimi 2010).AQSARstudybasedonMLR

(Multiple Linear Regression) and Artificial Neural Network

methods has been recently developed for a set of 58 benza-

mide antagonists (Fatemi and Dorostkar 2010). In some other

studies the role of electronic descriptors on the activity of

dopamine antagonists were explained (Pontiki et al. 2005).

QSAR modelling based on adaptive network-based fuzzy

inference systems (ANFIS) and least squares support vector

machines (LS-SVM) can present an interactive method and

overcome some limitations of linear traditional QSAR

methods. This fact is a result of their ability to carry out non-

linear mappings on the physicochemical and biological

descriptors of the molecules (Dastorani et al. 2010; Balabin

and Lomakina 2011; Zhang et al. 2011). Using two authori-

tative and trust worthy non-linear techniques of QSAR

(ANFIS and SVM) and their subsequent evaluations in a

sample data set of catechol structures, it is possible to obtain a

rational model of dopaminergic activity for the synthesized

compounds.

In continuation to our work on developing QSAR models,

in the present study we have explored ANFIS and SVM

models on the eigenvectors of some catechol derivatives as

antagonists of human D2 receptor. The results for PC-ANFIS

were compared with those of PC-SVM. Finally, the accuracy

of the developed models were illustrated using leave-one-out

(LOO), leave-many-out (LMO), Y-randomization and exter-

nal validation techniques. The results can be used to estimate

the activity of similar compounds in future studies.

Materials and methods

All calculations were done using an intel core i5 (CPU 2.6

GHZ) laptop running on windows 8. The calculations

including Kennard–Stone, cross-validation, chance corre-

lation and external validation were based on literature

(Kiralj and Ferreira 2009; Goodarzi and Freitas 2010;

O’Boyle et al. 2011; QSAR_Tools 2011; Sakhteman et al.

2011; Chirico and Gramatica 2012; Gaulton et al. 2012;

Bento et al. 2014). The m-files for calculations were

developed in our group.

Preparation of the dataset

A series of compounds and their affinities as Ki values

towards human dopamine D2 receptor were retrieved from

CHEMBL database as SMILES strings (Gaulton et al.

2012; Bento et al. 2014). The compounds with catechol

ethylamine substructure were extracted using substructure

search as implemented in Open babel 2.3.2 (O’Boyle et al.

2011). Another exclusion criterion for removing the com-

pounds from data set was diversity of bioassay techniques.

For this purpose, the compounds with different assay

methods were excluded from the data. Finally, 43 com-

pounds were extracted based on the used filters for the next

step of QSAR analysis. Iterative runs of open babel using a

batch shell script provided a primary 3D generation of the

compounds as mol2 coordinates (Sakhteman et al. 2011).

The 3D structures were thereafter minimized using

Hyperchem (Hypercube Inc. Gainesville, FL 32601, United

States). MM ? force field as implemeted in hyperchem

and Polak–Ribiere minimization algorithm was used for

optimization procedure. Tcl scripting as implemented in

Hyperchem was used for batch minimization of the struc-

tures. The final minimized compounds were subjected to

Dragon 2.1 for calculation of 1051 two-dimensional (2D)

descriptors. The matrix of the descriptors for the com-

pounds and their corresponding affinity vector as p-func-

tion (-log Ki) were entered into Matlab software for further

analysis.

QSAR modelling

A primary data reduction was used in order to remove

autocorrelation from the dataset. During this procedure the

Pearson correlation coefficients between each pair of

descriptors were calculated. Among the two descriptors

with a correlation value of more than 0.85, the one with

less correlation towards the affinity response vector was

excluded from the data set. The matrix of the remaining

descriptors was divided into calibration and test set using

Kennard–Stone method (Li et al. 2011). A subset of the

compounds in the dataset was selected for external test set.

The resulted matrices were subjected to principal compo-

nent analysis and the eigenvectors were generated for both

subsets. Subsequently, LS-SVM and ANFIS were used as

two modelling methods in order to train the calibration

subset. For least squares support vector machines, gaussian

RBF kernel with two tuning parameters, c (gam) and r2

(sig2) were used. In case of ANFIS, sugeno-type fuzzy

models were built using different membership functions

and the number of epochs for training was set to 50

(Goodarzi and Freitas 2010). In order to obtain the opti-

mum number of principal components for both modelling

methods, the eigenvectors of principal component analysis

(PCA) were entered to the models using stepwise method.

The predicted residual error sum of squares (PRESS) was

used as an error metric to select the best models for further

validity evaluations.
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Validation of QSAR models

Different validation methods were used to evaluate the pre-

dictive ability and robustness of the models. In order to assess

the robustness of the models in the calibration subset, LOO

(leave-one-out) and LMO 20 % (leave-many-out) cross-val-

idation methods were used. In case of LOO, each compound

was once excluded from the data set and its response valuewas

predicted using the obtained model. To perform LMO, the

data set was divided into N blocks with 20 % of the com-

pounds in each one. The blocks were consecutively excluded

from the model and predicted as described for LOO. Press,

QLOO
2 and QLMO

2 values were thereafter calculated according

to the Eqs. 1 and 2 (Chirico and Gramatica 2012).

PRESS ¼
X

yðexpÞ � yðpredÞ
� �2

; ð1Þ

Q2
LOO ¼ 1�

X
yðexpÞ � yðpredÞ
� �2

=
X

yðexpÞ � yðmeanÞ
� �2� �

:

ð2Þ

To evaluate the predictive ability of the models for

external data, external validation analysis was performed.

The models obtained from calibration sets were therefore

used to predict the response values of the test set based on

the optimum principal component eigenvectors. PRESS

and R2 of external validation were used to represent the

predictive ability of the models against external data sets.

Finally, response permutation test was used to ensure that

the obtained values of correlation were not obtained by

chance for training set and LOO cross-validation. During

this procedure the randomly scrambled response vectors

(Y) were used several times to train the data of calibration

set. The high error values of the random models revealed

that the presented model was not obtained by chance. Since

two machine learning methods were used in this study, it

was of great importance to check out that the models were

not overfitted. To ensure that the obtained models were not

over trained, Golbraikh and Tropsha acceptable model

criteria was also calculated for both models. For this pur-

pose, ExternalValidation1.0 java application was used for

the calculation of r2m, K and K0. CCC as another metric

for correlation coefficient together with MAE (mean

average error) and RMSE (root mean square error) were

also calculated for both models. (Kiralj and Ferreira 2009;

QSAR_Tools 2011; Chirico and Gramatica 2012).

The Pearson correlation coefficient of each descriptor

with the eigenvectors of principle component analysis was

calculated to estimate the contribution of each descriptor in

the used PCs. QSAR applicability domain was obtained by

means of Williams plot. For this purpose leverage values

were calculated and plotted against standard residuals

(Tetko et al. 2008).

Results and discussion

The compounds used in QSAR modelling are displayed in

Table 1. As it can be seen, all compounds are similar in

terms of bearing a common catechol ethylamine substruc-

ture. Different amino groups including primary, secondary,

tertiary and quaternary can be found among the compounds

of the data set. Other substituents and fragments attached to

catechol substructure were however diverse in the com-

pounds of dataset. The most potent structure was com-

pound 31 bearing dibenzo [de,g] quinoline ring moiety

(Ki = 3.8 nM). The inactive structure 22 revealed a Ki

value equivalent to 810,000 nM. All possible 2D descrip-

tors of Dragon including constitutional, topological,

molecular walk counts, BCUT descriptors, Galvez topo-

logical, 2D autocorrelations, functional groups, atom-cen-

tred fragments, empirical descriptors and properties were

calculated for the structures. Based on pretreatment of

primary data, 134 molecular descriptors were selected for

developing a QSAR model with respect to the response

affinity vector. Since too many descriptors were still pre-

sent in the data matrix before non-linear modelling, prin-

cipal component analysis was used as a dimension

reduction strategy on data matrix. As described in the

methods section, Kennard–Stone was used for splitting the

dataset into calibration and test sets. Kennard–Stone

algorithm is able to select a set of representative data which

are uniformly distributed in the space. This technique is

based on selecting the first two objects with the maximum

distance from each other. The third object is thereafter

selected in such a way to have the farthest distance from

the primarily selected data. The (M ? l) th sample is

therefore selected based on the criterion Max (Min distance

(d1C, d2C,…, dmC)). Where C is denouncing the candidate

sample in the dataset. The compounds selected as test set

are determined with T superscript in Table 1. As described

earlier, two non-linear modelling methods were used to

develop a reasonable QSAR model in this study.

Autoscaling preprocessing method was tested for both

modelling approaches and showed to be effective only in

case of PC-ANFIS.

The ANFIS is used for solving problems related to

parameter identification. A hybrid learning rule combining

the back-propagation gradient descent and a least squares

method is normally used in the ANFIS models. In ANFIS,

a hybrid learning algorithm is used to identify the mem-

bership function using the parameters of single output for

Sugeno-type FIS (fuzzy inference systems) (Sugeno and

Taniguchi 2004). The ANFlS structure is consisting of 5

layers, the first of which is the fuzzification layer composed

of n 9 p nodes. Where n is representing the number of

input variables and p is representative of membership
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Table 1 Compounds with

catechol ethylamine

substructure and their Ki values

for human Dopamine D2

receptor (Superscript T is used

for compounds in test set)

Ki 
(nM)

Structure Ki 
(nM) Structure Ki 

(nM) Structure

350 1300 217

510 12000 810000

340 1900 1900

8000 400 5400

1700 2500 3900

810 4400 3400

3600 9100 1900

2200 520 11400

1400 340 1550

710 3700 4670

3.8 70.3 80

88 2607 200

29 328 115

210 19.1 39.1

21.7

T

T

T

T

T

T

T

T

T
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functions. The membership functions of the input variables

are present in this layer. In most studies bell-shaped

functions are being used for fuzzification. Meanwhile, back

propagation is being taken to calculate the adaptive

parameters. The nodes in the second layer are used to

multiply the input values and produce the products based

on the below equation.

Wi ¼ lAi
xð Þ � lBi

yð Þ: ð3Þ

In the above equation x has the linguistic value Ai and

y has the linguistic value Bi.

The number of rules in the second layer is defined by the

Pn nodes. If two rules are present in the system, four

possible rules will emerge in the ANFIS structure. Each

node in the third layer computes its firing strength to the

sum of all the rules firing strength (Sugeno and Taniguchi

2004). The result of this layer is a normalized firing

strength.

In layer 4, the nodes compute a parameter function on

the third layer output. Parameters in this layer are called

consequent parameters. The overall output is computed as

the summation of all incoming signals in layer 5 according

to the below equation.

Overall output ¼
X

ŴiFi=
X

Wi: ð4Þ

In this study, a combination of least squares and back-

propagation gradient descent method was used for training

FIS membership function parameters in order to model a

given set of input/output data. In the first experiment all

PCs were entered to the ANFIS structure based on their

eigen values. Since no acceptable model was obtained

using eigenvalue ranking approach, the PCs were entered

into the ANFIS structure using stepwise method. The two

metrics, PRESS and R2 were used to evaluate the validity

of the obtained models. As displayed in Table 2, the model

obtained by the two PCs, 1 and 4 led to a reasonable R2 for

the data in the calibration set (0.84).

The structure of ANFIS model is also depicted in

Fig. 1. In this study the combination of two gaussian

membership functions was found to be optimum for

building the best possible ANFIS model. As seen in

Fig. 1, 4 rules were used in the ANFIS structure. The

second modelling approach was using least squares sup-

port vector machines. Support vector machines are cap-

able of solving both regression and classification

problems via non-linear kernel-based functions. SVM is

based on translating the input space to a higher dimen-

sional feature space in order to cope with non-linearities.

Least squares support vector machines has been thereafter

emerged to reduce the complexity of optimization (Suy-

kens et al. 2001). A set of linear equations was used

instead of the quadratic programming as implemented in

the original version of the support vector machines.

Keeping in the mind the below regression equation, x
and b are the slope and the intercept of the equation,

respectively.

Table 2 The results for QSAR

modelling of catechol structures

using PC-LS-SVM and

PC-ANFIS

LS-SVM ANFIS

Used PCs 1–6 1 AND 4

Function type Gaussian RBF Gaussian (input = 2, epochs = 50)

Preprocessing – Auto scaling

RCalibration
2 0.950 0.84

QLOO Cross-validation
2 0.82 0.63

QLMO(20 %) Cross-validation
2 0.80 0.58

RExternal validation
2 0.83 0.66

RY-permutation test
2 \0.2 \0.24

RY-permutation test LOO
2 \0.26 \0.3

Presscalibration 1.11 3.48

PressLOO Cross-validation 3.90 8.014

PressLMO Cross-validation 3.95 8.6

PressExternal validation 1.38 7.32

RmExternal Validation
2 0.63 (passed) 0.4 (failed)

CCC 0.84 0.6

RMSE 0.41 0.8

MAE 0.12 0.19

K 0.984 (passed) 0.95 (failed)

K0 0.996 (passed) 0.93 (failed)
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f xð Þ ¼ xTu xið Þ þ b i ¼ 1; 2; . . .: ð5Þ

u(xi) is the function for mapping the input space into

higher dimensions. The following equation is used to

minimize the function J.

minJðx; bÞ ¼ 1=2 xTxþ C1=2
X

ei
� �

: ð6Þ

In the above equation, C is the regularization parameter

to trade off the minimization of training error against that

of model complexity.

In this study, the combination of the first six PCs based

on eigenvalue ranking resulted in a model with the best R2

value (0.95). The plot of training procedure with the used

parameters for calibration set is displayed in Fig. 2. c is the
regularization parameter, determining the trade-off

between the training error minimization and smoothness of

the model. r2 is the squared bandwidth of gaussian

function.

As seen, all structures were reasonably fitted within the

model. Being satisfied with the training step, it was nec-

essary to evaluate the quality of both models (ANFIS

network and support vector machines) using different

validation techniques. For this purpose cross-validation

was performed using both LOO and LMO methods to

evaluate the robustness of the obtained models. The result

of cross-validation studies for both models are displayed in

Table 2. It was observed that the robustness of LS-SVM is

more than ANFlS model in terms of all metrics (PRESS

and QLOO,LMO
2 values). Since the difference range between

0.1–0.2 is normally accepted for R2 and Q2 values, the

robustness of PC-LS-SVM model was verified. Although

R2 m values were calculated for both models, it was

revealed that only PC-LS-SVM is showing an accept-

able value for K and K0 meaning that this model was not

overfitted. CCC, MAE and RMSE values were also more

reasonable for PC-LS-SM compared to PC-ANIFS. The

Fig. 1 The ANFIS structure for

mapping the activity of

compounds in data set

Fig. 2 Training step using LS-SVM
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plot of experimental data versus calculated values for both

models are also depicted in Fig. 3.

This result was in accord with a classification study for

the more ability of SVM models in comparison with

ANFIS (Ankishan and Yilmaz 2013).

In order to evaluate the predictive ability of QSAR

models against external data, both models were subjected

to test set. The results of external validation were also

showing the more predictive ability of PC-LS-SVM against

external data. Other external validation metrics including

Golbraikh–Tropsha criteria was passed for LS-SVM but

failed in the case of PC-ANFIS. Based on these validation

studies, the model obtained by LS-SVM was proposed as a

reasonable method for QSAR studies of compounds with

catechol ethylamine substructure. The learning approach

was not overfitted and could be used in further studies of

drug design. Y-responses permutation test was also per-

formed on LS-SVM model in order to ensure that the

proposed model was not obtained by chance. As seen in

Table 2, the errors obtained by modelling random scram-

bled vectors with the matrix of principal components are

significantly higher than those obtained for the real data set

(24–54 vs. 1.11–3.90). This verifies that the primary model

of support vector machines was not achieved by chance.

QSAR studies must be also evaluated for applicability

domain to ensure how the predicted data are reliable for

structurally similar compounds. For this purpose, Williams

graph was generated using standardized residuals and

leverage data. As depicted in Fig. 4, no molecule was

considered to be in the zone more than the cut-off h value

for leverage. It is therefore showing that no predicted value

is calculated by extrapolation in this data set.

In order to investigate the correlation of PCs with

structural features of the compounds, Pearson correlation

of each descriptor with the loading values of the first 6 PCs

was calculated.

The results are displayed in Table 3. As it is concluded

from Table 3, in case of each PC, the loading values for

one or many descriptors are much higher than those of the

others. The correlation values in Table 3 are indicative of

descriptor weights inside each PC.

It should be noted that each PC is bearing information

from all descriptors but the contribution of descriptors in

different factors are not equal. As displayed in Table 3,

HNar (Narumi harmonic topological index) is highly co-

related to PC6. This descriptor is the number of non-hy-

drogen atoms divided by the reciprocal vertex degree. This

descriptor can explain the more potency of those structures

with extended scaffolds such as compound 31 and 43 in

Table 1. For example, factors 1 and 2 have higher loadings

for TIE and D/Dr10, respectively. TIE is denouncing

E-state which is a geometrical descriptor. This parameter is

related to the characteristics of different atoms in the

molecule. The information about D/Dr12 is highly incor-

porated in factor 4. D/Dr corresponds to distance/detour

ring index and is among topological descriptors for the ring

systems. D/Dr descriptors are reflecting the effects of dif-

ferent ring systems on the activity of the study structures.

On the other hand, the loadings of factor 5 implied higher

contribution for nHDon (number of donor atoms such as N

and H for H-bonds). nHDon is a functional group

descriptor where its presence in our QSAR mode represents

the role of H-bonds. As seen in Table 3, H-050 (H attached

to heteroatom) is another descriptor related to the ability of

H-bond formation in this series of compounds. These two

descriptors are in accord with other molecular docking

studies of dopamine D2 receptor. It was reported that

residues such as Ser193 and 194 as well as ASP14 in the

Fig. 3 Comparison of PC-LS-SVM and PC-ANFIS for prediction of

activities in calibration and validation sets

Fig. 4 Williams Plot for PC-LS-SVM model with six PCs
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receptor are able to interact with dopaminergic ligands.

This might be actually explaining the more activity of

compound 31 with an extra OH at para position of another

phenyl ring with respect to compound 32. To propose new

structures based on the QSAR model the compound 31 was

selected as the most potent scaffold. Compounds with two

OH groups were designed and resulted in an equipotent

compound compared to 31 with Ki value of 4.2 nM. Based

on the obtained results, the proposed model of QSAR can

be therefore a leading strategy in future studies of design

for this target.
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