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ABSTRACT
There has been huge interest in applications of nanomaterials in biomedical science, including diagnosis,
drug delivery, and development of human organs. Number of these nanomaterials has been already
studied in human or at pre-clinical trial. There is a growing concern on potential toxicity and adverse
effects of nanomaterials on human health, including lack of standard method of assessment of toxicol-
ogy of these materials. Our investigation indicated that the bare and small nanoparticle have higher tox-
icity than modified and bulk materials, respectively. In addition, spherical nanoparticles have less toxicity
than rod nanoparticles due to immune response of body.
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Introduction

Nanotechnology is an emerging field involving manipulation
of the matter at nanometer scale, which results in a novel
class of materials with improved properties for a wide range
of applications. Nanomaterials are defined as substances with
one or more dimensions in the size range of 1–100 nano-
meters (Bleeker et al. 2012). Their use in diverse areas has
been vastly explored in recent years, offering great advan-
tages over conventional materials. In particular, the engi-
neered nanomaterials have been widely investigated for the
biomedical applications, including development of new diag-
nostic tools such as nanobiosensors and precise imaging
modalities, novel therapeutics based on targeted drug deliv-
ery systems, and scaffolds for tissue engineering (Chang 2014,
Karimi et al. 2015, Ketabchi et al. 2016, Naghibzadeh and
Adabi 2014). Due to the increasing usage of nanomaterials in
various fields of science and technology, the concerns have
been emerged about their safety, biocompatibility, and
toxicity.

Nanotoxicology as a branch of toxicology has been
attracted researchers attention to specifically investigate
potential toxic effects of nanomaterials. Nanotoxicology is an
interdisciplinary field dealing with different aspects of the
potential toxicity of nanomaterials. While there is a growing
interest in the use of nanomaterials in different fields, the
safety concerns about their use is also on the rise. Hence,
there is an urgent need to address these concerns and
expand our knowledge on the safety, biocompatibility, and

toxicity of nanomaterials. In biomedical applications, in par-
ticular, there are serious concerns on the safety and biocom-
patibility of nanomaterials, considering the possibility of
greater interactions between nanomaterials and biological
system.

According to a consensus conference of the European
Society for biomaterials in 1986, the biocompatibility is
defined as the ability of a substance to present an appropriate
host response in a particular application (Duncan and Izzo
2005, Williams 1989). It is worth noting that the interactions
between a material and a host are influenced by several fac-
tors including the host factors and the properties of the
material and the site and duration of the exposure. To under-
stand the type and scale of these interactions, nanomaterials
should be tested for potential toxicity in a variety of in vitro
and in vivo settings. However, there is no harmonized stand-
ards for evaluating toxicity and biocompatibility of nanomate-
rials in biological systems and the rules are still being
investigated (Dobrovolskaia and McNeil 2007). The aim of this
research was to critically review the biocompatibility and toxi-
cology of nanomaterials.

Several nanostructured materials have been explored for
the biomedical applications. The most commonly studied
materials are based on carbon, silica, and metals in different
shapes (i.e., spheres, tubes, and rods) (Adabi et al. 2011,
Ketabchi et al. 2016, Shakoori et al. 2015, Tavakol et al. 2014).
The toxicity and biocompatibility of these materials depends
on several factors such as the size, surface area, functional
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groups, concentration, and dosage (Foldvari and Bagonluri
2008). In general, the toxicity responses induced by ultrafine
particles is higher in comparison with larger sizes of similar
composition (Donaldson et al. 2001, Kang et al. 2008,
Oberd€urster 2000). Not only the size but also the surface plays
an important role in the toxicity of nanomaterials. Each par-
ameter could affect the toxicity and biocompatibility of a
nanomaterial independently or in association with other
parameters.

Clinical applications of nanostructures

Nanomaterials with its large surface area and nano size has
huge applications for drug delivery (Kamali et al. 2015). As
nanomaterials can cross the blood brain barrier, they have
become the top research theme in delivery of drugs to brain.
Nanomaterials with capability to be used in medical field, e.g.,
tissue engineering, drug delivery, and diagnosis, have poten-
tial toxicity and harmful effects on human health. To more
clarify about importance of nanoparticles safety, clinical appli-
cations of nanomaterials with a focus in regenerative medi-
cine and tissue engineering and blood brain barrier are
mentioned in the following.

Regenerative medicine and tissue engineering

Nanotechnology provides the basic scientific foundation for
the development of regenerative medicine along with tissue
engineering. Applications of nanomaterials in biomedical sci-
ences include molecules delivery (drugs, growth factors, and
DNA), imaging and tracking iPSC, surface modifications of
implantable materials or nanodevices (biosensor), and nano-
fibers for tissue scaffolds (Engel et al. 2008, Ramalingam and
Rana 2015).

Nanoparticles research within regenerative medicine has
been addressed mainly towards the development of entrap-
ment and delivery systems. Delivery systems can enhance the
success of therapeutic agents in nanoparticles for continuous
release in a controlled manner which will boost the success
rate of regeneration (Martin et al. 2004, Reddy et al. 2006).
Nanoparticles are also useful for the delivery of molecules to
stem cells, since stem cells undergoing lineage commitment
require a specific spatio-temporal presentation of factors.
Efforts have been made to incorporate these nanoparticles
into biomaterials for controlled release rates (La Francesca
2012). Solid surface-modified nanoparticles might also be
used for regenerative purposes. Although polymers are the
most used nanoparticles in the delivery area, the use of cer-
amics has also been investigated. Hydroxyapatite nanopar-
ticles conjugated with biomolecules could enhance osteoblast
adhesion and bone regeneration (Liu and Webster 2007).

In addition, nanofibers are used for preparing tissue scaf-
folds and for modifying the surface of implantable materials
and nanodevices such as biosensors (Adabi et al. 2015a,
2015b, Yang and Leong 2010). Depending upon the cells that
need to be targeted, functionalization of scaffold is done
accordingly with a variety of biological molecules. Ceramic
nanoparticles and nanofibers have been reported by

Sarvestani et al. (2007) to be suitable in the elaboration of
bio-inspired nanocomposites for bone tissue engineering
applications, acting as the reinforcing phase of a polymer
matrix, and improving scaffold bioactivity. The tantalum
blocks were also found to provide even better bone fusion
rates than structural bone grafts in several different clinical
applications (Levine et al. 2006, Wigfield et al. 2003), indicat-
ing the importance of nanoparticles in tissue and surface
engineering. Despite the fact that nanoparticles utilization in
tissue engineering and regenerative medicine is increasing,
their toxicity has not been fully addressed. Therefore, compre-
hensive studies are required about their toxicity before
the use.

Blood brain barrier

Blood brain barrier is composed of different cell types includ-
ing endothelial cells, astrocytes, pericytes, and microglial cells
(Begley 2004). The transfer of almost all drugs is limited by
the highly restrictive tight junctions and only small lipophilic
molecules with molecular weight less than 500 Da could cross
blood brain barrier (Pardridge 1998, Reese and Karnovsky
1967, Wolburg and Lippoldt 2002, Wu and Pardridge 1998).
Likewise, these molecules may be transported out of blood
brain barrier by active efflux mechanisms specially P-glycopro-
tein even after successful endothelial cell absorption (Begley
1996, Cordon-Cardo et al. 1989).

The size of particles can influence entrance of the particles
into the cells. For example, particles less than 12 nm are able
to cross the blood brain barrier (Sarin et al.2008). Besides, the
size may affect the mechanism of endocytotic uptake. Totally,
clathrin-mediated endocytosis was proposed as the predomin-
ant pathway for the uptake of particles less 200 nm, whereas
the uptake of particles 200–500 nm seems to be caveolae-
mediated (Hillaireau and Couvreur 2009).

Other properties such as surface charge and hydrophobi-
city also affect transcytosis rate due to the effect on proteins
adsorbed from plasma (Gessner et al. 2002). After intravenous
injection, bare nanoparticles are immediately adsorbed via
plasma and cleared from the blood stream by the macro-
phages of RES within 5 min (Pardridge 1992). However, by
modifying nanoparticle surface, their blood circulation time
can enhanced and their distribution in the body may alter
and increase their uptake in the brain (Tiwari and Amiji 2006,
Tr€oster et al. 1990). For example, 30 min, 2 h, and 4 h after
intravenous injection of doxorubicin solution containing 1% of
polysorbate 80, doxorubicin-loaded poly(butyl cyanoacrylate)
nanoparticles with and without polysorbate 80-coating into
the rats, their brains were removed. Considerable concentra-
tions of doxorubicin in the were only observed after injection
of the polysorbate 80-coated nanoparticles, proving the suc-
cessful crossing of the blood brain barrier (Triguero et al.
1990). After administration of drug solution alone, doxorubicin
was not taken up into the brain. Moreover, toxicological inves-
tigation of doxorubicin bound to poly(butyl cyanoacrylate)
demonstrated that the doxorubicin toxicity significantly
decrease after intravenous injection of the polysorbate 80-
coated nanoparticles in comparison with the doxorubicin solu-
tions. A considerably reduced cardio- and hepatotoxicity occur
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in comparison with free drug. The lower toxicity of the nano-
particulate formulations of doxorubicin can be attributed to
the altered biodistribution of the doxorubicin loaded nanopar-
ticles. As the tumor therapy with doxorubicin is limited due to
cardiotoxicity, the reduced cardiotoxicity with doxorubicin
loaded nanoparticles can play great importance. Likewise, the
binding doxorubicin to nanoparticles alter distribution of the
drug, resulting in lower accessible to hepatocytes and conse-
quently less toxicity (Gelperina et al. 2002, Gulyaev et al. 1999,
Pereverzeva et al. 2007).

The effects of nanomaterials properties on toxicity
in clinical applications

Many factors could potentially influence material’s biocom-
patibility and toxicity including their surface chemistry
(Chou et al. 1999, Tsai et al. 2001), roughness (Campoccia
et al. 2003), surface energy (hyrophobicity/hydrophilicity)
(Cai et al. 2002), the level of degradation products and
release of by-products (Sun et al. 2007), concentration (Sun
et al. 2011), particle size (Singh et al. 2007), oxidative stress
functions (Reddy et al. 2010, Yang et al. 2009), crystallinity
(Braydich-Stolle et al. 2009), coating (Harris et al. 2010, Lin
et al. 2012), and the longevity of particles (Ai et al. 2011).
Although, it is difficult to determine the specific role of any
individual factor in toxicity and biocompatibility of nanoma-
terials, but some of the most important characteristics were
summarized in the following.

The size

For the application of nanomaterials in biomedicine, all of
effective characteristics on toxicity and biocompatibility
should be considered. One of the most effective parameters
on toxicity of nanomaterials is the size of the materials.
Nanoparticles could pass through cell membranes and go
into the blood and organs (Gatti and Rivasi 2002). Hence,
the areas of biological systems which are normally inaccess-
ible for larger particles may be accessible for nanoparticles
(Dhawan and Sharma 2010). Besides, when the size of a
bulk material decreases below a specific critical threshold, it
results in an increase in surface area (Ai et al. 2011). Thus,
the number of chemical molecules bounded to the surface
increases and consequently the reactivity enhances. This
can be a reason behind the potential toxic effects of nano-
particles which could be more significant compared to the
larger particles (Ai et al. 2011, Linkov et al. 2008, Suh et al.
2009). For instance, studies demonstrated that the size-
dependent cytotoxicity of gold nanoparticle (with diameter
1.4 nm) capped with triphenyl phosphine monosulfonate
(TPPMS) resulted in cell death via induction of oxidative
stress and mitochondrial damage (Kunzmann et al. 2011,
Pan et al. 2009) whereas gold nanoparticles (with size
3.7 nm) modified with poly(ethylene glycol) (PEG) had no
toxic effects despite their entrance into the nucleus of cells
(Gu et al. 2009, Kunzmann et al. 2011). Likewise, titanium
dioxide (TiO2) with the size of 20 nm induced 43-fold more
inflammation than Tio2 with the size of 250 nm in

short-term experiments of pulmonary toxicity in rats
(Hallock et al. 2009). Park et al. (2011) demonstrated that
silver nanoparticles with the size of 20 nm are more toxic
than the larger ones and Shi et al. (2013) in a study
revealed that there was negative correlation between the
particle size and the toxicity effects; it means, small silver
nanoparticles (5–10 nm) had higher toxicity effects than
large ones (15–25 nm) in a model organism of Tetrahymena
pyriformis. Other investigations also indicated that smaller
particles had more pathological effects on the lungs in
comparison with the larger particles of the same material
(Oberd€orster et al. 1994, Singh et al. 2007).

In general, nanomaterials in comparison with the bulk
materials have higher surface energy and catalytic activities.
For example, a number of nanoparticles such as metal
oxide nanoparticles, fullerenes and silica particles can cause
reactive oxygen species (ROS) generation in cell-free sys-
tems (Cristina Yeber et al. 2000, Fubini and Hubbard 2003,
Isakovic et al. 2006, Kim et al. 2004). ROS production via
nanoparticles with the size of 2–4 nm was 100–1000 times
faster in comparison with 100 nm nanoparticles (Hoffman
et al. 1994). Therefore, the enhanced catalytic activity might
be a size-dependent phenomenon. However, the effect of
other parameters on potential toxicity of nanoparticles in
correlation with the size such as shape and charges could
be considered.

The shape

Studies have demonstrated that the shape could influence
the biocompatibility and toxicity of a nanoparticle. It has been
illustrated with altering material’s shape from an equiaxed to
acicular one, the toxic response was enhanced. Wang et al.
reported that gold nanorods are highly toxic to the presence
of hexadecyl cetyl trimethyl ammonium bromide (CTAB) as
coating material for human skin cells whereas spherical gold
nanoparticles are not inherently toxic. They explained that it
is difficult to understand the cytotoxicity of gold nanomateri-
als individually, because CTAB was used for synthesis of gold
nanorods and this surfactant alone show cytotoxicity whereas
CTAB is not in gold nanoparticles (Wang et al. 2008). Likewise,
Hsiao et al. reported that the nanorod zinc oxide (ZnO) par-
ticles are more toxic than the spherical ones on human lung
epithelial cell (A549) at a fixed size (Hsiao and Huang 2011). It
could be due to the interaction forces of lengthwise-oriented
nanomaterials which enhance proportionally with their
lengths (Brown et al. 2007). Therefore, the van der Waals
forces of rod-shaped nanomaterials are greater in comparison
with spherical ones.

The shape of nanomaterials could also influence the cellu-
lar internalization rate. Spherical particles are more easily
internalized into the cell membrane in comparison with the
large length-to-radius ratio (elongated) particles laying parallel
to the cell membrane (Decuzzi et al. 2009). For example, the
uptake of spherical-shaped gold nanoparticles is more than
rod-shaped counterparts (Chithrani et al. 2006). Therefore,
nanomaterials can be designed in an appropriate shape in
order to enter the cells more easily for therapeutic purposes
such as cancer therapy.
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Surface charge

Surface charge of the nanoparticles is another important fac-
tor which can affect biocompatibility. The zeta potential is
commonly used for characterizing the surface charge of nano-
particles. Zeta potential of nanoparticles in solutions in the
ranges above (±) 30 mV leads to stability and prevents aggre-
gation of the particles (Mohanraj and Chen 2007). However,
surface charge affects the behavior of particles with biological
moieties like cell–membrane interactions, penetration, protein
adsorption, and stability in biological fluid (Maffre et al. 2011).
Neutral particles show slower opsonization rates than the
charged particles (Owens Iii and Peppas 2006, Roser et al.
1998) and nanoparticles with slight negative charges tend to
accumulate in tumor tissues more efficiently (He et al. 2010,
Patil et al. 2007). Positive charged particles could be more
easily uptaken by the cells than the other nanoparticles due
to the attractive interaction between positively charged nano-
particles and the negative cell membranes (Chen et al. 2011,
Zhu et al. 2010) as seen in schematic Figure 1. On the other
hand, cationic nanoparticles are much more potent in activa-
tion of immune response than neutral or anionic nanopar-
ticles (Kedmi et al. 2010, Zolnik et al. 2010).

Other factors

The aforementioned properties of nanoparticles as well as
hydrophilicity, hydrophobicity, and surface topography, rough-
ness, and tension may affect the protein adsorption, platelet
activation, cellular growth, and consequently biocompatibility
(Hsu and Lin 2004). Toxicity of nanoparticles can be decreased
or eliminated using various surface modification techniques.
For instance, it has been shown that coating of superpara-
magnetic iron oxide nanoparticles with pullulan significantly
reduced toxicity of these nanoparticles (Ai et al. 2011).
Uncoated magnetic nanoparticles (MNP) were associated with
increased acidity of cell media to a cytotoxic level, leading to
greater cytotoxicity in comparison with MNP coated with pol-
yethyleneglycol-co-fumarate or polyvinyl-alcohol (Arsianti
et al. 2010, 2011, Cedervall et al. 2007b, Nel et al. 2009).
The hydrophobicity of nanoparticles determines the type

and the amount of adsorbed biological components, mainly
proteins (opsonins). Hydrophobicity influences both the
amount of opsonization and the features of nanomaterial-
binding proteins (Cedervall et al. 2007a, Goppert and Muller
2005). Opsonin proteins bound to hydrophobic nanoparticles
facilitate macrophage-mediated phagocytosis of nanoparticles.
In general, it seems that hydrophilic nanoparticles are safer
and less toxic than the hydrophobic ones in biological sys-
tems (Sadaf et al. 2012, Yan et al. 2006, Zhu et al. 2010). In
order to increase the blood circulation half-life of nanopar-
ticles, one solution is to increase hydrophilicity of the surface.
The most preferred method is modification of the surface by
physical adsorption or chemical grafting of the poly(ethylene
glycol) (PEG) to the surface of nanoparticles (Aggarwal et al.
2009, Jokerst et al. 2011, Moghimi and Szebeni 2003, Owens
Iii and Peppas 2006). This could increase the circulation half-
life of the nanoparticle by avoiding phagocytosis and rapid
clearance from the blood. Likewise, it has been shown that
the presence of poly-(vinyl pyrrolidone (PVP), a hydrophilic
block polymer, on the surface of polyethersulfone (PES) mem-
branes, which is used as hemodialysis membranes, could
improve the biocompatibility (Ran et al. 2011). For some appli-
cations, however, hydrophobic surface could be preferred. For
instance, surface modification of nanoparticles by hydropho-
bic polymers showed more adsorption in intestinal mucus
(Ai et al. 2011). Surface modification of the polymeric mem-
brane with amphiphilic triblock co-polymer, poly(vinyl pyrroli-
done)–b-poly(methyl methacrylate)–b-poly(vinyl pyrrolidone),
revealed a superior biocompatibility (Ran et al. 2011). The
blood-compatibility of these modified membranes enhanced
in comparison with PES membrane without modification
(Ran et al. 2011). Different surface modification methods have
been explored to enhance biocompatibility of various nano-
materials. However, the optimum modification technique with
the best effect on biocompatibility for a particular nanomate-
rial is yet to be found.

Nanomaterials and immune system

The immune system protects the body from foreign invasions.
Antigen-presenting dendritic cells, macrophages and the other
phagocytic cells recognize foreign bodies and trigger an
appropriate immunological response to the foreign materials.
The recognition of nano-scaled particles as foreign stimuli
may promote different levels of immune responses. Therefore,
minimized or diminished immunogenicity of nanomaterials is
favored in biomedical application of nanomaterials and nano-
particles as novel diagnostic or therapeutic modalities.

Most materials are coated by a layer of proteins, as
exposed to the biological system after entrance to the body
(Cedervall et al. 2007b, Lynch and Dawson 2008, Sahoo et al.
2007). The proteins corona on nanoparticles, depending on
the amounts and the type of the adsorbed proteins, deter-
mines the subsequent interactions between nanoparticles and
the immune cells and plays an effective role on biodistribu-
tion and uptake of nanomaterials by the reticuloendothelial
system (RES) (Aggarwal et al. 2009, Chonn et al. 1992, Kiwada
et al. 1987, Patel 1992, Tyrrell et al. 1977). It is now
widely known that nanoparticles remarkable properties (e.g.,

Figure 1. The effect of surface charge on nanoparticle–cell interactions. Cationic
nanoparticles are more prone to enter the cells by electrostatic attraction of
negatively charged cell membrane.
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size, surface charge and coating, hydrophobicity and hydro-
philicity, etc) could be effective on their biocompatibility
(Aggarwal et al. 2009, Dobrovolskaia and McNeil 2007,
Dobrovolskaia et al. 2008). According to the reports, unmodi-
fied nanoparticles are taken up from the bloodstream within
seconds by phagocytic cells, i.e., macrophages via opsoniza-
tion (a process conducted by opsonins, a constituent of
plasma proteins that makes nanomaterials more susceptible
to ingestion) (Gref et al. 1994). Modifying the nanoparticles
surface may considerably reduce their immunotoxicity and
enhance their biocompatibility (Aggarwal et al. 2009,
Dobrovolskaia and McNeil 2007, Dobrovolskaia et al. 2008,
Gref et al. 1994). For example, the surface characteristics of
nanoparticles such as hydrophobicity and hydrophilicity affect
opsonization potential, as hydrophilic materials are opsonized
slower than the hydrophobic ones, most likely due to reduced
absorbability of hydrophilic surfaces (Carrstensen et al.1992,
M€uller et al. 1992, Norman et al. 1992, Owens Iii and Peppas
2006). Therefore, surface modification of hydrophobic nano-
particles by coating with poly(ethylene glycol) (PEG), called
‘‘PEGylation’’, or other kinds of hydrophilic polymers leads to
a hydrophilic surface and act as an effective strategy for
shielding of nanoparticles from plasma proteins, thereby hin-
dering them from immune recognition and resulting in a pro-
long blood circulation half-life (Figure 2) (Gref et al. 1994,
2000, Kim et al. 2007, Lemarchand et al. 2006, Moghimi 2002,
Owens Iii and Peppas 2006, Paciotti et al. 2004, Peracchia
et al. 1999a, 1999b). It has been also reported that opsoniza-
tion rate of neutrally charged particles is slower in comparison
with the charged particles, representing a direct relationship
between protein binding and the surface charge of particles
(Owens Iii and Peppas 2006, Roser et al. 1998). Gessner et al.

(2002) reported that adsorption of plasma proteins enhanced
as the surface charge density increased no significant differen-
ces in the type of adsorbed proteins.

Toxicity and biocompatibility studies: in vivo

Pre-clinical evaluation of nanoparticles in appropriate animal
models is a crucial step of characterization to prove their
safety and efficacy. The type of the nanomaterial and its par-
ticular application mainly determines the choice of animal
model, route of administration, dosage, study end points, and
other parameters. The interactions between nanomaterial as a
foreign body and the animal as a host are mainly influenced
by physicochemical properties of the nanomaterial. Totally, in
most of the cases, there is no enough evidence to prove the
safety or toxicity of nanomaterials. Besides, there is no a
unique protocol for in vivo biocompatibility studies and sev-
eral different procedures can be adapted to investigate the
safety and efficacy of a specific nanomaterial in vivo.

However, before this can become a clinical reality, toxicity,
and biocompatibility of the nanoparticles has to be carefully
evaluated, with emphasis on an understanding of the physio-
chemical properties that account for the adverse biological
responses (Fadeel and Garcia-Bennett 2010).

One of the most widely accepted defining characteristic of
nanoparticle-based medicine is particle size and distribution,
because size can significantly impact pharmaco-kinetics, bio-
distribution, and safety (Moghimi et al. 2001). The pharmaco-
kinetics and distribution of nanoparticles in the body depends
on their surface physicochemical characteristics, shape as well
as size (Hoet et al. 2004). Distribution can be either monodis-
perse or polydisperse, whereas the former with narrow distri-
bution are desirable for consistency. It has been proposed
that nanoparticles population of mixed sizes (polydisperse) is
intentionally introduced for different rates of drug release to
sustain delivery over time. To show that adsorption and distri-
bution of nanoparticles are size dependent, Hillyer and
Albrecht administered metallic colloidal gold nanoparticles
with different sizes orally to mice. They noticed that distribu-
tion of nanoparticles increases with a decrease in size of
nanoparticles to several organs (Hillyer and Albrecht 2001),
and concluded that bigger particles reside in the gastrointes-
tinal tract. In addition, nanoparticles with 10 nm in size were
found in blood, liver, spleen, kidney, testis, thymus, heart,
lung, and brain but larger particles were only in spleen, liver,
and blood (De Jong et al. 2008). Chen et al. investigated the
effect of colloidal gold nanoparticles in different sizes
(3–100 nm) on physical and behavioral status of mice model.
Intraperitoneal administration of 3–5 nm gold nanoparticles
did not induce sickness but larger gold nanoparticles induced
loss of appetite, fatigue, change of fur’s color, and weight loss
and most of them died within 21 days (Chen et al. 2009).

Route of administration of nanoparticles include oral, pul-
monary and dermal delivery. After the absorption process of
nanoparticles by the various ports of entrance, the systemic
circulation can distribute them towards all organs and tissues
in the body. Several studies have shown distribution of par-
ticles to several organs including liver, spleen, heart, and brain
(Hillyer and Albrecht 2001, Ji et al. 2006, Nemmar et al. 2002,

Figure 2. PEGylation of nanoparticles. Uncoated nanoparticles are mainly picked
up by macrophages whereas coating of nanoparticles with PEG leads to an
enhanced circulation time due to prevention of nanoparticles internalization by
macrophages.
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Oberd€orster 2002). Nanoparticles distribution to these organs
is often mediated by their combination with human serum
albumin (HSA), coagulant factors, RBC, WBC, and platelets
available in systemic circulation. Therefore, their interaction
with serum component (like Apo-A1) in vitro result in cyto-
toxic effect reduction (Barrett et al. 1999). Cartiera et al. (2009)
reported that the intracellular distribution of particles within
cells is also time and dose-dependent. PLGA nanoparticles
within renal tubule cells appeared to co-localize with early
endosomes 2 h after exposure whereas they were also found
in other compartments after 4–24 h. This is in agreement with
finding of Panyam and Labhasetwar (2003) who reported
endo-lysosomal escape of nanoparticles. Cellular uptake of
nanoparticles did not involve endocytosis (Geiser et al. 2005)
since erythrocytes have no phagocytotic receptors (Rothen-
Rutishauser et al. 2006). This finally suggests that nanopar-
ticles are able to cross the cell membrane using processes
other than phagocytosis and endocytosis.

The clearance of nanoparticles is also size and surface char-
acteristics dependent. Small nanoparticles with size smaller
than 20–30 nm are rapidly cleared by renal excretion, while
200 nm particles or those greater in size are more efficiently
taken up by the Kupffer cells and mononuclear phagocytic
system (reticuloendothelial system) located in the liver, spleen,
and bone marrow (Moghimi et al. 2001). Previous reports
have shown that nanoparticles of 150–300 nm are localize
mainly in the liver and spleen (Gaumet et al. 2008), and col-
loids of sizes 200 to 400 nm undergo rapid hepatic clearance.
The nanoparticle clearance is facilitated by the opsonization
of blood components and complement proteins on the par-
ticle surface (Moghimi 2003). The inhibition of opsonization
and evasion of detection by macrophages with approaches
such as pegylation prolong the circulation of nanoparticles in
the case of liposomal doxorubicin (Doxil) (Cattel et al. 2002).

In addition to cellular uptake of nanomaterials via different
pathways of body, biodegradation, size- and dose-dependent
cytotoxicities of nanomaterials, and the interaction between
organs cells and nanoparticles are important issues that
should be considered. The studies have been shown that vari-
ous nanoparticles, e.g., micelles, liposomes, polymeric, and
inorganic nanoparticles, interact with plasma proteins via dif-
ferent mechanisms (Karmali and Simberg 2011).

Dose is other determinant factor in the toxicity of nanoma-
terials in vivo. In a study in mice model, the toxicity of
13.5 nm citrate coated gold nanoparticles proved adverse
effects of higher concentration of the nanoparticles such as
weight loss, decreased red blood cells count (Zhang et al.
2010). In another study, different groups of rats received 4,
10, 20, and 40 mg/kg silver nanoparticles, intravenously.
Results indicated that low doses (4 and 10 mg/kg) did not
affect the hematological parameters of the animals, while in
higher concentrations, 20 and 40 mg/kg, there was a signifi-
cant change in the level of ROS, liver function enzymes such
as ALT, AST, ALP, and bilirubin. DNA damage was also
observed in the high dose groups, showing genotoxicity of
these nanoparticles in high concentrations (Tiwari et al. 2011).

Properties related to the surface of nanoparticles deter-
mine the type and extent of interactions between nanopar-
ticles and different plasma proteins such as immunoglobulin,

lipoproteins, coagulation, and complement factors. These pro-
teins can be adsorbed to the surface of nanoparticles and
affect the metabolism, clearance, and long-term fate of nano-
particles. Manipulating the surface of nanoparticles via altering
the surface charge and coating with different materials is an
effective strategy to make the particles more soluble and bio-
compatible. Different coating material has been used to
modulate surface properties of nanoparticles and control the
biological response to those particles in living organisms.
Surface modification can also affect the biodistribution of
nanomaterials in different organs. Thi Ha Lien et al. (2012)
showed that PEG and BSA coated gold nanoparticles are accu-
mulated in liver Kupfer cells and no gold nanoparticles were
found in other cell types and other organs like kidney. PEG is
one of the most widely used polymers for in vivo application
of nanoparticles owing to its good solubility and biocompati-
bility. Nanoparticles with PEG coating have shown more blood
circulation time due to the ability to escape from RES system
(Gref et al. 1994, Peracchia et al. 1999a).

Conclusion

There are still several hindrances in the use of nanomaterials
in various fields in general, and in biomedical field in particu-
lar, which should be resolved. One of the main restricting fac-
tors in the application of the nanomaterials is their safety,
which remains a real concern. The concern is more serious
when these materials are supposed to enter into human
body, either intentionally or accidentally. One might be very
optimistic about the potential benefits that nanomaterials
offer, underscoring the risks associated with their use.
However, studies conducted on testing toxicity and biocom-
patibility of nanomaterials reveals various ranges of toxicity
and biocompatibility, which reflects the distinct response of
biological system toward different nanostructures and nano-
materials. To date, our knowledge on the interactions of
nanomaterials with biological systems is limited and harmon-
ized standards do not exist for evaluating toxicity of nanoma-
terials on biological systems. There is also a huge controversy
on the influence of different parameters related to nanomate-
rials properties on their toxicity and safety. Therefore, despite
rapid development in the field of nanotechnology, there are
still important challenges that necessitate further studies to
provide more accurate data on the potential risks and hazards
of biomedical applications of nanomaterials.
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