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Abstract: One of the novel applications of the nanostructures

is the modification and development of membranes for

hemocompatibility of hemodialysis. The toxicity and hemo-

compatibility of Ag nanoparticles and arginine-treated multi-

walled carbon nanotubes (MWNT-Arg) and possibility of their

application in membrane technology are investigated here.

MWNT-Arg is prepared by amidation reactions, followed by

characterization by FTIR spectroscopy, Raman spectroscopy,

and thermogravimetric analysis. The results showed a good

hemocompatibility and the hemolytic rates in the presence of

both MWNT-Arg and Ag nanoparticles. The hemolytic rate of

Ag nanoparticles was lower than that of MWNT-Arg. In vivo

study revealed that Ag nanoparticle and MWNT-Arg

decreased Hematocrit and mean number of red blood cells

(RBC) statistically at concentration of 100 mg mL21. The mean

decrease of RBC and Hematocrit for Ag nanoparticles

(18% for Hematocrit and 5.8 3 1,000,000/mL) was more than

MWNT-Arg (20% for Hematocrit and 6 3 1000000/mL). In addi-

tion, MWNT-Arg and Ag nanoparticles had a direct influence

on the White Blood Cell (WBC) drop. Regarding both nano-

structures, although the number of WBC increased in initial

concentration, it decreased significantly at the concentration

of 100 mg mL21. It is worth mentioning that the toxicity of Ag

nanoparticle on WBC was higher than that of MWNT-Arg.

Because of potent antimicrobial activity and relative hemo-

compatibility, MWNT-Arg could be considered as a new can-

didate for biomedical applications in the future especially for

hemodialysis membranes. VC 2015 Wiley Periodicals, Inc. J Biomed

Mater Res Part A: 103A: 2959–2965, 2015.
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INTRODUCTION

Nanotechnology is the manufacturing of various structures or
organizations at the molecular size. This field covers both
modern effort and concepts that are more advanced.1,2 Nano-
structures have shown many promising applications which
attracted numerous researchers in different fields of sci-
ence.3–10 Unfortunately, the extensive use of nanostructures
without considering their implications has posed a significant
risk to environment, which directly has influenced plants, ani-
mals, and human.11–15 Therefore, the investigation of nano-
structures toxicity seems critical to not only understand their
functional mechanisms but also decrease their harmful and
negative impacts on human health.16–18 It is obvious that

nanostructures can penetrate human cells through inhalation,
ingestion, dermal contact and injection.19–22 They could be
easily distributed into the blood circulation systems and from
there to sensitive organs.23,24 They also have shown side
effects on blood cells.25,26 Among a variety of available nano-
structured materials, Ag nanoparticles and carbon nanotubes
are the most widely utilized in industry.27–30 Multi-walled car-
bon nanotubes (MWNT) are allotropes of carbon with a cylin-
drical nanostructure, which have unusual properties.31 In
particular, due to their extraordinary thermal conductivity and
promising mechanical and electrical properties, carbon nano-
tubes find applications as additives to various structural mate-
rials.32 Ag nanoparticle has well-known as an antimicrobial
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agent.33,34 Functionalization of MWNT with different agents
can improve their weak interaction with other materials. Argi-
nine is one of the basic aminoacids that plays an important
role in cell division, healing of wounds, removing ammonia
from the body, immune function, and releasing of hormones.
This aminoacid is metabolized in various organs such as kid-
ney, intestines and liver without any side effects.35,36 In agree-
ment with our previous works,37–39 the published have shown
that the antimicrobial activity of aminoacid treated MWNT
were higher than that of pristine sample, which showed a
promising property of treated sample for biological applica-
tions. Despite there are useful properties associated with
MWNT, the negative effect of MWNT and Ag nanoparticles on
biological systems has opened a great concern.40 Although,
in vitro toxicity assessments of different nanomaterials being
studied by different researchers, the in vivo toxicity evaluation
has not yet been investigated especially on blood cells.

A significant amount of research has been applied on Ag
nanoparticles while the MWNT seem to be more cost-
effective, have lower cytotoxicity and so are more benign to
the environment.41 One of the main obstacles in blood filtra-
tion is clogging due to thrombus deposition, which limits the
maximum filter life to 15–40 h during both hemodialysis and
Continuous Renal Replacement Therapy (CRRT).42–44 The
membrane pores have to be sufficiently small to prevent pro-
tein loss from blood plasma, while the membrane surface
should be carefully engineered to provide high membrane
hemocompatibility and minimal thrombosis.45 Membrane sur-
face engineering through the alteration of surface chemistry
and structure by incorporating of nanomaterials has gained a
significant attention. Ag nanoparticles and MWNT are possi-
bly the most important nanomaterials that used broadly in
different areas of sciences.33,34,46 Thus, the low toxicity of the
nanostructured materials on blood cells is more important in
hemodialysis.47,48 Generally, nanoparticles are incorporated
into the membrane matrix through the two well-known
approaches of coating49–52and blending.53–55 In the coating
approach, the membrane is first casted and then the nano-
particles are deposited on the membrane surface. On the
other hand, in the blending approach, the nanoparticles are
added into the membrane casting solution and then the
membrane is casted. Because of advantageous properties of

arginine-functionalized MWNT, these nanostructures may be
considered as agents for performance enhancement of hemo-
dialysis and hemofiltration membranes if their hemocompati-
bilities are proved.

So, the present study aims in assessing the effect of
arginine-functionalized MWNT and Ag nanoparticles on
blood cells. In this study, the hemolysis activity of these
nanostructures is also evaluated in the presence of in vitro
analyses. The results of this study will be suitable for design
of new hemodialysis membranes, which is the subject of
our future publications.

EXPERIMENTS

Preparation of MWNT-arg
Functionalization process of MWNT with arginine (MWNT-
Arg) is schematically shown in Figure 1. According to the
technique adopted from previous research publications.7,56

the MWNT carboxylation was performed. To obtain carboxy-
lated MWNT (MWNT-COOH), the pristine sample was first
sonicated in a mixture of nitric acid/sulfuric acid with a vol-
ume ratio of 1/3 for 6 h at 100�C in a closed vessel. The
solution was cooled down to room temperature and then fil-
tered by a PTFE-membrane. The cake like-filtrate was thor-
oughly washed with the pure water until a desired pH value
of 6-7 was obtained. To generate acyl chloride groups
(MWNT-COCl) in the main structure of MWNT, MWNT-COOH
was stirred in the mixture of thionyl chloride and anhydrous
DMF at 70�C for 24 h, and then cooled at room temperature.
The resulted solution was filtered by a PTFE membrane
while thoroughly washed by THF. Finally, the collected black
filtrate was dried at 40�C under vacuum and anhydrous
conditions. Then, it produced MWNT-COCl (100 mg) which
was sonicated in a solution of arginine (200 mg) and DMA
(20 mL) at 100�C for 24 h. The synthesized solution was
then cooled and filtered through a PTFE membrane. To elimi-
nate unreacted arginine, the filtrate black cake collected on
the membrane was thoroughly washed by DMA, pure water,
and THF, and then dried in an oven for 48 h.

Hemolysis assay (in vitro)
For hemolysis investigation, anticoagulated blood was pre-
pared from 20 mL healthy rat’s blood. Then, Red Blood Cells

FIGURE 1. Schematic diagram of functionalization procedure of MWNT with arginine. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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(RBC) were isolated by centrifugation and washed and
diluted via sterile phosphate buffered saline (PBS). Hemoly-
sis was assessed according to a method introduced by the
present authors.57,58 Briefly, the serial dilution of nanostruc-
tures and the prepared RBC were first mixed. After incuba-
tion at 37�C for 60 min and centrifugation for 15 min, the
absorbance of supernatant (the concentration of free hemo-
globin in the supernatant) was measured at 545 nm. Nor-
mal saline and distilled water were used as the negative
and positive controls, respectively.

Assessment of toxicity
The serial dilution of Ag nanoparticles and the treated MWNT
with arginine (20, 40, 80, and 100 mg) were prepared. For
assessment of toxicity, 80 rats (40 for assessment of MWNT
and 40 for Ag nanoparticles) were treated by different con-
centrations of nanostructures. For this, 40 rats were divided
into five groups (four sample groups and one control group).
About 1 mL of the mixture of serial dilution of Ag nanoparticle
as well as MWNT were intraperitoneally injected to the four
sample groups and control groups were received 1 mL of
physiological saline. This protocol was repeated for 2 weeks.
Then, the blood samples were prepared from all groups and
finally hematocrit, white and RBC were calculated by a cell
counter device (model Horiba, France). All of the results were
collected and comprised. Also, the statistical analysis was
carried out by SPSS software.

RESULTS

Functionalization results
To evaluate functionalization of MWNT, TGA analysis, Raman
and FTIR spectroscopy were applied.

Fourier transform infrared spectroscopy. FTIR spectra of
pristine and functionalized MWNT with arginine (MWNT-
Arg) are presented in Figure 2. As could be seen, MWNT-
Arg provides various peaks at different wavenumbers, while
FTIR spectrum of pristine MWNT showed no cue of func-
tional groups. For MWNT-Arg, the list of peaks in FTIR spec-
trum and their interpretations were detailed in Table I. As
compared with Kumar and Rai results,59 pure arginine have
bands at 3151, 2928, 2842, 1680, 1574, and 1464 cm21,
which are respectively corresponded to the NH2 stretching,
asymmetric stretching of CH3, symmetric stretch of CH3,
out-of-plane bending of NH2, stretching vibration of C@O
and asymmetric bending of CH3. A majority of peaks with
some shifts are obvious in MWNT-Arg. Also, the OAH
stretching vibration at 3300–3400 cm21 can be related to
the carboxylation phase. The C@O stretching vibration
(amide bond) has shown a peak at 1700 cm21, which
resulted from amidation reaction. According to the results,
it was obvious that the peak of carboxyl groups was sharp,
which could have resulted by arginine molecules attached
to the surface of MWNT and/or oxidation treatment with
nitric and sulfuric acids.7

Raman spectroscopy. Raman spectroscopy is commonly
employed to characterize different functional groups. This tech-
nique can also estimate the degree of covalent functionalization.

The Raman results of pristine sample and MWNT-Arg
are presented in Figure 3. The spectra of pristine sample
and functionalized MWNT illustrate D, G, and 2D bands at
1274, 1513, and 2653 cm21 respectively, which are related
to the main structure of MWNT. The ID/IG bands are consid-
ered as a ratio of sp3 carbon to sp2 carbon.7,59 In the field
of functionalization, enhancement of ID/IG ratio depicts the

FIGURE 2. FTIR spectra of pristine and treated MWNT with arginine.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

TABLE I. FTIR Interpretation of the MWNT-Arg

Type of
Functionalized
MWNT

Peak
(cm21) Interpretation

MWNT-Arg
3300–3400 OAH and NAH stretching

vibration (secondary amines)
3239 NAH stretching vibration of

primary amine
2994 CAH stretching vibration
1700 C@O stretching vibration

(amide bond)
1488 ANH bending vibration
1366 CAN stretching vibration
1298 CAO stretching vibration of

carboxylic acids

FIGURE 3. Raman spectra of pristine and treated MWNT with

arginine. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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more extent of covalent groups on the MWNT structure.60

As can be seen, the MWNT-Arg shows higher enhancement
of ID/IG ratio than that of pristine MWNT.

The G band is commonly related to the motion in oppo-
site pattern of two adjacent carbon atoms in the graphitic
sheet, which imply on the crystalline graphitic carbon in
MWNT structure. Meanwhile, the D band is related to the
disordered carbon, which resulted from adding functional
groups to the main backbone.37

According to the results of FTIR and Raman spectros-
copy, functionalization of MWNT with arginine was
confirmed.

Thermogravimetric analysis. Figure 4 shows the curves of
thermogravimetric analysis (TGA) for pristine MWNT and
treated MWNT with arginine. It could be seen that the pris-
tine MWNT curve illustrates no weight loss up to 500�C,
which could be attributed to the decomposing temperature
of graphitic structures. On the other hand, the treated sam-
ple elucidated three weight losses in the temperature range
of 0–600�C. The first weight loss in the temperature range
of 0–200�C could be related to the unreacted carboxyl and/
or acyl chloride groups as well as small pieces of MWNT
resulted from cutting in carboxylation step. Also, the second
weight loss occurred in the temperature range of 200–
250�C, which was associated with arginine as an unstable
organic part on the structure of MWNT. The third weight
loss in the temperature range of 300–600�C illustrated the
decomposition temperature of graphitic structures of

MWNT in air. The lower decomposition range (around
300�C) can be attributed to the defected, short, cut MWNT.

Hematological results
Equation (1) was used for the determination of hemolysis
activity of nanostructurs:

Hemolytic rate %ð Þ ¼ A2B

C2B
3100 (1)

where A is the absorbance values of the nanostructures,
B and C are the absorbance values of negative and positive
control groups respectively.

As can be seen in Table II, the hemolytic rates of both
MWNT-Arg and Ag nanoparticles were lower than the stand-
ard value (5%). Also, the hemolytic rate of Ag nanoparticles
(value of 3.04%) was lower than that of MWNT-Arg
(3.28%); but, this difference isn’t significant. The results
showed that Ag nanoparticle and MWNT-Arg can decreas
the Hematocrit and average number of RBC. According to
the results of both samples and control group, there was a
drop in blood cells in the presence of both nanostructures
samples, which was statistically considerable in the group
treated by 100 mg mL21. The reported results are shown in
Figures 5 and 6. These figures illustrated the effects of dif-
ferent concentrations of nanostructures on Hematocrit and
the number of RBC. As shown in these figures, there is a lin-
ear relationship between the increase of dose and the
reduction of Hematocrit and the number of RBC.

Also, the comparison between Ag nanoparticles and
MWNT-Arg have demonstrated that the mean decrease of
RBC and Hematocrit in groups treated by Ag nanoparticles

FIGURE 4. TGA curves of pristine and treated MWNT with arginine.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

FIGURE 5. Effect of different concentrations of MWNT-Arg and Ag

nanoparticles on hematocrit. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

TABLE II. Hemolytic Rates of the MWNT-Arg and Ag Nanoparticle

Samples Absorbance 1 Absorbance 2 Absorbance 3 The Mean of Absorbance Hemolytic Rate (%)

Negative control 0.010 0.010 0.011 0.0103 -
Positive control 0.32 0.31 0.29 0.306 -
Ag nanoparticles 0.020 0.019 0.019 0.0193 3.04
MWNT-Arg 0.021 0.019 0.020 0.020 3.28
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were more than those of the Arg-treated MWNT, which con-
firmed higher toxicity of Ag nanoparticle than MWNT-Arg.

For the average number of white blood cells (WBC), there
was a non-linear relationship between increase of dose and
decrease of WBC. The data showed that although the average
number of WBC increased in the concentrations of 20, 40,
and 80 mg mL21 of Ag nanoparticle and MWNT-Arg, it
decreased in the concentration of 100 mg mL21 (Fig. 7). Ag
nanoparticles had more adverse and/or negative effects on
WBC as compared to MWNT-Arg.

DISCUSSION

In the current study, the effect of various concentrations of
Ag nanoparticles and Arg-functionalized MWNT on rat RBC,
WBC, and hematocrit were evaluated.

Functionalization process of MWNT with arginine
(MWNT-Arg) is performed by the addition of carboxyl
groups on the surface of MWNT and then formation of acyl
chloride linkages, which provided a bridge for amidation
reaction between amine groups of arginine and carboxylic
acid sites. The functionalization process details were
completely described in the previous studies.37–39

The results showed that the RBC have well tolerated the
different concentrations of the two nanostructures in com-
parison with the positive group. However, comparison with
Ag nanoparticles, MWNT-Arg had a lower hemolytic rate. A
similar study showed that N-MWNT and MWNT were more
hemocompatibility. They mentioned that the interaction of
N-containing functional groups with blood tissues have
shown a positive effect on hemocompatibility.61 In this
study, addition of basic aminoacid (arginine) may have the
similar effect.

From the results, both of the nanostructures have toxic-
ity on blood cells, but the overall toxicity of Ag nanopar-
ticle was more than Ag-MWNT to some extent. The toxicity
of different nanostructures was proven by different
researcher groups.40,62 The toxicity of Ag nanoparticles has
been shown on different cells in many publications such as
human lung cells, human macrophages, and human mesen-
chymal stem cells and so forth.63–65 Previous study illus-
trated that the high concentration of Ag nanoparticles has

toxicity on blood mononuclear cells.66 MWNT has also
shown side effect on the different parts of life. MWNT has
different toxicity such as inhalation toxicity, genotoxicity
and so forth.67–69 Ag nanoparticle is one of the nanostruc-
tures used in different parts of life especially as the antimi-
crobial agent.33,34 Toxicity of CNTs have been widely
investigated by different groups and showed that their
toxicity is related to composition, length, diameter and
sizes.70,71 Pristine CNT has minimum cytotoxicity at higher
concentrations (both in vivo and in vitro). On the other
hand, functionalized CNT by different compounds reduce
toxicity in addition to enhancement of their biological
activity.72,73 Meng et al. showed that modification of
MWNT surface can reduce their negative effects on human
RBC.74 Addition of carboxyl and amine groups on the sur-
face of pristine MWNT can improve the hemotoxicity and
hemocompatibility of these nanostructures.75 In another
study, it was shown that because of the contribution of
N-containing functional groups to cell tissues, N-MWNT
have the highest cell-adhesion strength, cell viability, cell
proliferation in comparison to the pristine MWNT. So, this
functionalization enhances good cytocompatibility of
MWNT.61 Moreover, the recent results have shown that the
functionalization of MWNT by Arg enhances their antimi-
crobial activity significantly.38 According to the results,
functionalizations of MWNT by Arg improve their compati-
bility with blood cells and antimicrobial activity. In this
study, results showed that funtionalized MWNT with argi-
nine has higher hemocompatibility than Ag nanoparticles.
On the other hand, previous results38 showed that the
addition of arginine on surface of MWNT enhance their
antimicrobial activities on different Gram positive and
Gram negative bacteria as well as fungal pathogens. So,
arginine funtionalized MWNT may be the promising and
effective biomedical material which could be selected as a
good alternative for Ag nanoparticles for biological applica-
tions in the future, particularly as the substrates for the
inhibition of infectious diseases. In addition, it is possible
to modify and enhance the performance of the hemodialy-
sis membranes by the addition of arginine funtionalized
MWNT in the membranes.

FIGURE 6. Effect of different concentrations of MWNT-Arg and Ag

nanoparticle on RBC. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

FIGURE 7. Effect of different concentrations of MWNT-Arg and Ag

nanoparticle on WBC. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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