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a b s t r a c t

Antibody-mediated therapies including antibody-drug conjugates (ADCs) have shown much potential in
cancer treatment by tumor-targeted delivery of cytotoxic drugs. However, there is a limitation of pay-
loads that can be delivered by ADCs. Integration of antibodies to drug-loaded nanocarriers broadens the
applicability of antibodies to a wide range of therapeutics. Herein, we developed antibody fragment-
installed polymeric micelles via maleimide-thiol conjugation for selectively delivering platinum drugs
to pancreatic tumors. By tailoring the surface density of maleimide on the micelles, one tissue factor (TF)-
targeting Fab' was conjugated to each carrier. Fab'-installed platinum-loaded micelles exhibited more
than 15-fold increased cellular binding within 1 h and rapid cellular internalization compared to non-
targeted micelles, leading to superior in vitro cytotoxicity. In vivo, Fab'-installed micelles significantly
suppressed the growth of pancreatic tumor xenografts for more than 40 days, outperforming non-
targeted micelles and free drugs. These results indicate the potential of Fab'-installed polymeric mi-
celles for efficient drug delivery to solid tumors.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Antibody-drug conjugates (ADCs) are attracting much interest
in cancer therapy [1,2] due to the improvement of therapeutic ef-
ficacies by selectively delivering anticancer drugs to cancer cells
compared to conventional chemotherapies. The development of
ADCs has been one of the most active areas in recent years, and as
much as thirty ADCs have entered clinical evaluation in 2013 for the
treatment of solid tumors and leukemia [3]. Nevertheless, a major
challenge in the development of ADCs is the limited amounts of
drugs that can be delivered by a single antibody, as overloading
may reduce the binding affinity of the antibody or affect the
pharmacokinetics [4,5]. Thus, 2 to 4 cytotoxins per antibody are
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generally introduced in an ADC for accomplishing effective thera-
peutic responses without compromising the affinity of the antibody
[6,7]. Consequently, the drugs conjugated to the antibody must be
highly cytotoxic, such as auristatins [8,9], maytansines [10,11] and
calicheamicins [12], which are 100e1000 times higher than typical
anticancer drugs, for exerting enough efficacy, although there are
growing concerns over side effects from decomposition of ADC
under physiological conditions [13,14]. However, these obstacles of
ADCs may be overcome by integrating antibodies to drug-loaded
nanocarriers, which are capable of delivering a significantly
higher amount than ADCs [15].

Among long-circulating nanocarriers with improved tumor
extravasation and penetration, polymeric micelles offer substantial
benefits as platform nanocarriers for conjugating antibodies.
Polymeric micelles present high and versatile loading of bioactive
molecules and their controlled release, and show prolonged blood
circulation (stealth property) due to their surface coverage by
biocompatible PEG strands [16e19]. Besides the relative small size
of micelles ranging from 10 to 100 nm, they exhibit enhanced
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tumor accumulation by the enhanced permeability and retention
(EPR) effect through leaky vasculatures and impaired lymphatic
drainage in solid tumors [20,21]. To date, a few antibody-
conjugated micelles (immunomicelles) were reported for specific
delivery of drugs in cancer therapy. One of the earliest immuno-
micelles were paclitaxel-loaded lipid-micelles conjugating
nucleosome-targeting 2C5 antibody on their surface for specific
targeting of breast adenocarcinoma and Lewis lung carcinoma
[22,23]. Recently, epidermal growth factor receptor (EGFR)-tar-
geting [24] and HER-2-targeting immunomicelles incorporating
doxorubicin [25], and hypoxia inducible factor 1 (HIF-1)-targeting
paclitaxel-loaded immunomicelles [26] have shown enhanced ef-
ficacy toward antigen-overexpressing cancer cells, indicating the
high potential of immunomicelles in targeted cancer therapy.
However, no immunomicelle has proceeded to clinical evaluation
so far. Therefore, using micellar platform with high potential for
clinical translation should facilitate the development of anticancer
therapies based on immunomicelle.

Herein, we introduced the antibody fragments to polymeric
micelles incorporating an active complex of oxaliplatin, (1,2-
diaminocyclohexane)platinum(II) (DACHPt) (DACHPt/m), which
have shown strong therapeutic activity against several cancer
models and are being evaluated in phase I clinical studies [27].
DACHPt/m are self-assembled by the polymer-metal complex for-
mation between the carboxylates of poly(glutamic acid) of poly(-
ethylene glycol)-b-poly(glutamic acid) (PEG-b-P(Glu)) copolymers
and the platinum drug [28]. The release of the incorporated DACHPt
from the micelles is triggered by the ligand exchange of Pt(II) from
the carboxylates in the block copolymer to chloride ions in the
media, and is further accelerated at low pH conditions [29].
Accordingly, DACHPt/m stably circulate in the bloodstream in
micelle form with minimal drug release, and after accumulating in
tumor tissues and being endocytosed by cancer cells, the drug
release from DACHPt/m is accelerated due the low pH and high
chloride ion concentration of late endosomes/lysosomes. By
conjugating antibody fragments to DACHPt/m, DACHPt/m could
improve the efficacy of the loaded platinum drugs by enhanced
delivery to tumor cells and effective intracellular drug release. In
this regards, we may maximize therapeutic effects through
antibody-antigen recognition and cellular uptake. As an antibody,
we selected our recently developed anti-tissue factor (TF) antibody
(clone 1849), which can target TF overexpressed on the surface of
cancer cells, such as human pancreatic, colorectal, breast and lung
cancers [30e32], as well as tumor associated monocytes and
endothelial cells [31,33]. In fact, this anti-TF antibody demonstrated
efficient targeting abilities including inhibition of the invasion and
metastasis [34]. Accordingly, the development of these anti-human
TF-antibody Fab' fragment-conjugated DACHPt/m (anti-TF Fab'-
DACHPt/m) was studied in detail to determine their potential as a
versatile target antigen for tumor-selective drug delivery. These
immunomicelles were further evaluated against a tumor model of
pancreatic cancer, because it is one of the most challenging models
for drug delivery [35,36] and the application of antibody-antigen
systems to polymeric micelles may positively impact on its clin-
ical treatment. Our results highlight the potential of this approach
for constructing Fab'-installed polymeric micelles for efficient drug
delivery to tumors.
2. Materials and methods

2.1. Materials

a-Methoxy-u-amino poly(ethylene glycol) (MeO-PEG-NH2; Mn: 12,000), N-
carboxyl anhydride of g-Benzyl-L-glutamate (NCA-BLG) were purchased from NOF
Co., Inc. (Tokyo, Japan) and Chuo Kaseihin Co., Inc. (Tokyo, Japan), respectively.
Dimethyl formamide (DMF), dimethyl sulfoxide (DMSO), dithiothreitol (DTT), N-(4-
Maleimidobutyryloxy)-sulfosuccinimide, sodium salt (Sulfo-GMBS), sodium sulfate
decahydrate (Na2SO4$10H2O), oxaliplatin and phosphate buffered saline (PBS) were
obtained from Wako Pure Chemical Co., Inc. (Osaka, Japan). MeO-PEG-b-P(Glu) was
synthesized as previously described synthetic method [28]. MeO-PEG-b-P(Glu);
yield ¼ 97%, the degree of polymerization of the P(Glu) (DPP(Glu)) ¼ 40, Mn,
NMR ¼ 18,000. 1H NMR (400 MHz, D2O): d (ppm) ¼ 1.70e2.55 (eCH2eCH2eP(Glu)
side chain), 3.30 (eOeCH3), 3.45e3.85 (eCH2eCH2eOePEG backbone), 4.20e4.40
(eCHeP(Glu) backbone). Mal-PEG-b-P(Glu) was synthesized based on our previ-
ously reported method [37]. Mal-PEG-b-P(Glu); yield ¼ 94%, DPP(Glu) ¼ 40, 1H NMR
(400 MHz, D2O): d (ppm) ¼ 1.70e2.65 (eCH2eCH2eP(Glu) side chain), 3.35
(e(CH2)3eCOeNHeCH2e), 3.50e3.92 (eCH2eCH2eOePEG backbone), 4.12e4.46
(eCHeP(Glu) backbone), 6.85 (eCH]CHe maleimide group). Dichloro(1,2-
diaminocyclohexane)platinum(II) (DACHPtCl2) was purchased from Heraeus
(Hanau, Germany). AgNO3 was purchased from Aldrich Chemical Co., Inc. (Mil-
waukee, WI). BCA protein assay reagent was purchased from Pierce Chemical Co.,
Inc. (Rockford, IL). Alexa Fluor 647-succinimidyl esters, Alexa Fluor 488-TFP ester,
Hoechst 33342, and LysoTracker Green were purchased from Invitrogen Molecular
Probes (Eugene, OR). Rhodamine 6Gwas purchased from SigmaeAldrich Co., Inc. (St.
Louis, MO). Anti-human tissue factor antibody (1849c, F(ab')2) and anti-mouse tissue
factor antibody (1157c, F(ab')2) were purchased from ITM Co., Ltd. (Nagano, Japan).
Fetal bovine serum (FBS) was purchased from Dainippon Sumitomo Pharma Co., Ltd.
(Osaka, Japan). Cell Counting Kit-8 was obtained from Dojindo Laboratories
(Kumamoto, Japan).

2.2. Cell lines and animals

Human pancreatic cancer BxPC3 cells were obtained from American Type Cul-
ture Collection (Manassas, VA). The BxPC3 cells were maintained in RPMI 1640
medium (Sigma Chemical Co., Inc., St. Louis, MO) supplemented with 10% (v/v) FBS,
1% penicillin/streptomycin in a humidified atmosphere containing 5% CO2 at 37 �C.
BALB/c nu/nu mice (18e20 g body weight; female; age, 6 weeks) were purchased
from Charles River Japan (Kanagawa, Japan). All animal experiments were per-
formed in accordance with the Guidelines for the Care and Use of Laboratory Ani-
mals as stated by the University of Tokyo.

2.3. Preparation of antibody fragment Fab' with thiols

To obtain Fab' fragment having thiol residues, F(ab')2 fragments of anti-human
TF antibody (0.5 mg/mL) were stirred with different concentrations of DTT from
0.5 mM to 5mM for 30min at 37 �C. The crude productwas purified by ultrafiltration 4
times (MWCO: 30,000). The purity of Fab' fragment was confirmed by aqueous
phase GPC (JASCO HPLC system, Easton, MD), which equipped with UV detector and
a Superdex™ 200 10/300 GL column (GE healthcare, Ltd., Buckinghamshire, UK),
with eluent of 10 mM phosphate buffer (pH 7.4) containing 150 mM NaCl at a flow
rate of 0.75 mL/min at room temperature. For the fluorescence-labeling, anti-human
TF F(ab')2 (1 mg/mL) was combined with Alexa Fluor 488 in 1M NaHCO3 solution at
room temperature. After 1 h stirring, the Alexa 488-labeled F(ab')2 was separated
from non-conjugated free Alexa dye by PD-10 column. The labeled F(ab')2 was then
treated by DTT in the samemanner as explained in above to afford Alexa 488-labeled
anti-TF Fab' fragment having thiol residues.

2.4. Preparation and characterization of maleimide-functionalized DACHPt-loaded
micelles (Mal-DACHPt/m)

MeO-PEG-b-P(Glu) and Mal-PEG-b-P(Glu) (total [Glu] ¼ 5 mM) were mixed with
DACHPt(NO3)Cl (5 mM) in distilled water at 37 �C, for preparation of 50% Mal-
DACHPt/m [MeO-PEG-b-P(Glu)]/[Mal-PEG-b-P(Glu)] ¼ 1.0/1.0 (mol/mol)] and 20%
Mal-DACHPt/m [4.0/1.0 (mol/mol)]. The obtained micelles were purified by dialysis
(Spectra/Pro 6 Membrane: MWCO: 6-8,000), followed by ultrafiltration (MWCO:
30,000) to afford Mal-DACHPt/m. The size and distribution of both Mal-DACHPt/m
were estimated by dynamic light scattering (DLS: Malvern Instruments Ltd., UK, at
532 nm, 25 �C) measurement. The content of Pt in the micelles was measured by the
inductively coupled plasmamass spectrometry (ICP-MS: Agilent 7700 series ICP-MS,
Agilent Technologies, Inc., Santa Clara, CA). The association degree of Pt and car-
boxylic acid in P(Glu) was calculated by the Pt contents and freeze-dried weight of
the micelles. Alexa 647-labeled Mal-DACHPt/m were obtained by using Alexa Fluor
647-labeled MeO-PEG-b-P(Glu) [37].

2.5. Preparation and characterization of antibody fragment-conjugated micelles

Anti-TF Fab' was conjugated to 50% Mal-DACHPt/m or 20% Mal-DACHPt/m by
incubation at room temperature overnight to afford immunomicelles. Before the
conjugation reaction, the concentration of antibody was determined by BCA protein
assay kit with anti-TF Fab' antibody as the standard. The feed ratio between mal-
eimide groups of Mal-DACHPt/m and anti-TF Fab' was 17.0/1.0 (mol/mol) for prep-
aration of 50% Mal-DACHPt/m and 6.8/1.0 (mol/mol) for that of 20% Mal-DACHPt/m.
The conjugation of antibody fragments to Mal-DACHPt/m was confirmed with
fluorescence correlation spectroscopy using a Zeiss LSM 510 META equipped with
FCS setup ConfoCor 3 (Carl Zeiss, Germany). The fluorescence of Alexa 488-labeled
Fab' fragments was detected with a 488 nm Argon laser for excitation and a
530 nm band-pass filter for emission before and after the conjugation with non-
fluorescence labeled 20% Mal-DACHPt/m or 50% Mal-DACHPt/m. After the
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measurement, the diffusion time of Fab' fragments and immunomicelles were
calculated from the autocorrelation curves. Diffusion coefficient was then calculated
based on the diffusion times of micelles and Rhodamine 6G as standard fluorescence
molecule.

2.6. In vitro evaluation of anti-TF Fab'-DACHPt/m by flow cytometry

Alexa 647 fluorescence-labeled anti-TF Fab'-DACHPt/m or DACHPt/m were
added to BxPC3 cells (1 �105 cells in 100 mL medium) and incubated at 4 �C for 1 h,
without light exposure. Cells were washed four times with fresh medium to remove
unbound micelles, resuspended in PBS and the mean fluorescence intensities were
measured by flowcytometry (Becton Dickinson LSR II) and analyzed by BD FACSDiVa
software. During the measurement, 10,000 events were counted per each sample.
For the competition assay, the 10-fold excess of free anti-humanTF F(ab')2 fragments
were co-incubated with Alexa 647-labeled anti-TF Fab'-DACHPt/mwith BxPC3 cells,
and the experiment was carried out as described above.

2.7. Assessment of cellular uptake by confocal laser scanning microscopy (CLSM)

The fluorescence intensity of micelles was adjusted to equal intensity by Nano-
drop 3300 (RFU ¼ 8,000). Alexa 647-labeled DACHPt/m or anti-TF Fab'-DACHPt/m
were added to BxPC3 cells (1.6 � 104 cells in 200 mL medium) in Lab-Tek 8-well
chambered coverglass (Thermo, Rochester, NY). After determined time periods, the
cells were washed twice with fresh medium, stained with Hoechst 33342, and
imagedwith CLSMusing a Zeiss LSM780 (Carl Zeiss, Germany). The fluorescencewas
quantified by measuring the mean pixel intensities from Alexa 647-labeled micelles
in cell areas using the LSM software (n ¼ 25). The statistical significance of cellular
uptake was determined by Student's t-test. By staining with LysoTracker Green, the
colocalization of Alexa 647-labeled-anti-TF Fab'-DACHPt/m with late endosomal/
lysosomal compartments was assessed.

2.8. In vitro cytotoxicity

The 50 percent inhibitory concentration (IC50) of free oxaliplatin, DACHPt/m,
anti-TF Fab'-DACHPt/m and anti-TF Fab' was evaluated by cytotoxicity assay against
BxPC3 cells. The cells were exposed to the drugs for 3 h, followed by washing three
times with freshmedium and post-incubated for 48 h. Then, the viability of cells was
measured by using Cell Counting Kit-8. For the cytotoxicity evaluation of anti-TF
Fab', the cells were continuously exposed to the antibody fragments for 48 h, and
the viability of the cells was investigated as aforementioned.

2.9. In vivo antitumor activity assay on BxPC3 subcutaneous tumor model

To prepare BxPC3 subcutaneous xenografts, BALB/c nu/nu mice (6 week old,
female) were inoculated with 5 � 106 cells. When the average tumor volume
reached 50 mm3, mice were i.v. injected from the tail vein at 3 times every fourth
day with saline (PBS), oxaliplatin (8 mg/kg), DACHPt/m (3 mg/kg), anti-TF Fab'-
DACHPt/m (3 mg/kg), and co-injection of Mal-DACHPt/m (3 mg/kg) and anti-TF Fab'.
The tumor volume was measured by a caliper and calculated with the use of the
following equation:
Fig. 1. Schematic illustration of the preparation o
Volumetumor ¼ 0:5 Major diameter � ðMinor diameterÞ2
� �

The statistical significance of the antitumor activity was determined by Two-
way ANOVA test.

2.10. Platinum accumulation on BxPC3 subcutaneous tumor in mouse xenograft

BxPC3 cells (5 � 106 cells in medium) were inoculated to BALB/c nu/nu mice (6
week old, n ¼ 5, female) to establish subcutaneous BxPC3 tumor model. When the
average tumor size is reached c.a. 100 mm3, anti-TF Fab'-DACHPt/m, DACHPt/m and
oxaliplatin were intravenously injected into the tail vein at 5 mg/kg on a DACHPt
basis. Mice were sacrificed after 1, 6 and 24 h injection. Tumors were excised and
decomposed with nitric acid on a hot plate until the samples became dried.
Approximately 1.0 mL of nitric acid (1 vol%, 1.0 mL) was added to the samples to be
dissolved, then the platinum concentration in the solutionwas measured by ICP-MS.

3. Results and discussion

3.1. Preparation of maleimide-functionalized DACHPt-loaded
micelles

The block copolymers such as methoxy-poly(ethylene glycol)-b-
poly(glutamic acid) (MeO-PEG-b-P(Glu), polymer 1 in Fig. 1)
copolymer and maleimide-PEG-b-P(Glu) copolymer (Mal-PEG-b-
P(Glu), polymer 2 in Fig. 1) were added to DACHPt aqueous solution
to prepare the maleimide-functionalized DACHPt-loaded micelles
(Mal-DACHPt/m) [37,38]. During this process, the coordinate co-
valent bonds occurred between the platinum atom and the
carboxylate groups of poly(glutamic acid), and then triggered their
self-assembling to form core-shell micelles, with DACHPt in their
core and maleimide moieties on their PEG shell (Fig. 1) [28,39]. The
proportion of maleimide functionality on the shell of micelles was
controlled for optimizing the conjugation of antibody fragments by
directly adjusting the ratio of polymer 1 and polymer 2. In this way,
we prepared Mal-DACHPt/m with different maleimide density in
the surface of micelle such as 20% Mal-DACHPt/m and 50% Mal-
DACHPt/m. The diameter of these Mal-DACHPt/m was approxi-
mately 30 nmwith narrow distribution, as determined by dynamic
light scattering measurements (DLS), which was comparable to
that of DACHPt/m prepared from MeO-PEG-b-P(Glu) (Table 1). The
complexation ratio of Pt to carboxylate ([Pt]/[COO] ¼mol/mol) and
the drug loading of Mal-DACHPt/m (Pt/polymer ¼ wt/wt%) were
also comparable to that of DACHPt/m (Table 1). The maleimide
f anti-TF Fab' fragment-installed DACHPt/m.



Fig. 2. GPC chromatograms detected by UV absorption at 220 nm of anti-TF F(ab')2
fragment after DTT treatment with different concentrations.

Fig. 3. FCS autocorrelation curves of Alexa 488-labeled anti-TF Fab' fragment before
and after the conjugation with 20% Mal-DACHPt/m or 50% Mal-DACHPt/m.

Table 1
Characterization of maleimide-functionalized DACHPt/m.

Micelles Size [nm]a PDIb [Pt]/[COO]c

[mol/mol]
Pt/polymerc

[wt/wt%]

DACHPt/m 30 0.09 0.48 46
20% Mal-DACHPt/m 28 0.09 0.46 44
50% Mal-DACHPt/m 31 0.10 0.47 45
anti-TF Fab'-DACHPt/md 32 0.17 0.45 44

a Volume averaged diameter determined by DLS.
b Polydispersity index determined by DLS.
c Determined by ICP-MS.
d Anti-TF Fab'-conjugated 50% Mal-DACHPt/m.

Fig. 4. Binding of Alexa 647-labeled DACHPt/m (green line) and anti-TF Fab'-DACHPt/
m (blue line) against human pancreatic cancer BxPC3 cell after 1 h incubation at 4 �C
analyzed by flow cytometry. Competition experiments on BxPC3 cells (black line) were
performed by co-incubating anti-TF Fab'-DACHPt/m with 10-fold excess free anti-
human TF F(ab')2. The cells without any micelles were used as a negative control
(red line).
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groups on Mal-DACHPt/m allow introducing antibodies through
thiol-maleimide reaction, which is a widely used linkage for pre-
paring ADC [40,41]. Moreover, the conjugation of antibodies on the
surface of micelles avoids the binding of platinum drugs with the
Table 2
FCS parameters of fluorescently labeled anti-TF Fab' before and after conjugation with M

Correlationa Counts per molecule
[kHz]a

Anti-TF Fab' 1.03 3.61
Anti-TF Fab'

(20% Mal)-DACHPt/m
1.02 2.51

Anti-TF Fab'
(50% Mal)-DACHPt/m

1.03 3.66

a Correlation, counts per molecule and diffusion time were calculated by ConfoCor 3 s
b Hydrodynamic diameter was calculated by Stokes-Einstein equation.
antibodies, which may reduce their binding affinity, and eliminates
the potential disturbance of the antibodies on the self-assembly
process of the micelles. In addition, because the release of
DACHPt from the core of micelles is induced by acidic pH and Cl�,
the conjugation of the antibodies by thiol-maleimide chemistry is a
substantial advantage, as it can be performed in water without
changing pH, preventing drug leakage [42,43]. Thus, these Mal-
DACHPt/m could facilitate the efficient conjugation of antibodies
without affecting their properties.

3.2. Conjugation of antibody fragments to maleimide-
functionalized DACHPt/m

Thiol-bearing Fab' fragments of anti-humanTF antibody (anti-TF
Fab') were fabricated by cleaving the interchain disulfide bonds of
F(ab')2 through reduction with dithiothreitol (DTT), as these bonds
are readily reducible sites, and their cleavage is frequently used for
antibody conjugation without losing the binding properties of an-
tibodies [40,43,44]. The optimal reduction conditions for preparing
anti-TF Fab' were determined by gel permeation chromatography
(GPC) (Fig. 2), following the shift of the peak related to F(ab')2 at
18.0 min to that of anti-TF Fab' at 20.5 min. When 500 mM of DTT
was added to the reaction system, we observed only the peak
corresponding anti-TF Fab', while F(ab')2 treated with 5 and 50 mM
DTT showed the coexistence of F(ab')2 and anti-TF Fab' (Fig. 2). It is
worth noticing that, at DTT concentrations higher than 500 mM, Fab'
al-DACHPt/m.

Diffusion
time
[ms]a

Diffusion coefficient
[mm2/sec]a

Hydrodynamic
diameter
[nm]b

92.4 ± 1.6 77.6 ± 1.3 6
437.1 ± 12.9 16.4 ± 0.5 27

505.3 ± 6.5 14.2 ± 0.2 31

oftware.
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fragment decomposed into smaller fragments, showing the chro-
matograms at later elusion times (data not shown). Therefore, we
concluded that 500 mM of DTT was the optimal concentration for
producing anti-TF Fab'.

The obtained anti-TF Fab' were purified by ultrafiltration, fol-
lowed by the installation on Mal-DACHPt/m through the formation
of thioether bond [6,45]. The conjugation of anti-TF Fab' to
Mal-DACHPt/m was studied by following the changes in the diffu-
sion coefficient of Alexa 488-labeled anti-TF Fab' by fluorescence
correlation spectroscopy (FCS). From the FCS autocorrelation
function curves of Alexa 488-labeled anti-TF Fab' and its conjugated
DACHPt/m (anti-TF Fab'-DACHPt/m) (Fig. 3), it was observed that
the diffusion coefficient of anti-TF Fab'-DACHPt/mwas significantly
smaller than that of single anti-TF Fab' (Table 2), indicating the
successful conjugation of anti-TF Fab' on Mal-DACHPt/m. In addi-
tion, the counts per molecule (CPM), i.e. the mean fluorescence
intensity per molecule, in single anti-TF Fab' were comparable to
that of 50% anti-TF Fab'-DACHPt/m (Table 2), suggesting that one
anti-TF Fab' was conjugated to each 50% Mal-DACHPt/m in this
Fig. 5. (A) Representative CLSM images of BxPC3 cells incubated with Alexa 647-labeled DA
33342-stained nuclei (blue) and fluorescence-labeled micelles (red) (scale bar ¼ 20 mm); (B)
6 h was quantified (n ¼ 25, error bar ¼ ±S.E.M., **p < 0.001 calculated by Student's t-test); (C)
37 �C. The images show Alexa 647-labeled micelles (red), late endosomes and lysosomes st
overlay (scale bar ¼ 10 mm).
reaction setting. The calculated CPM for anti-TF Fab'-DACHPt/m
prepared from 20%Mal-DACHPt/mwas less than that of single anti-
TF Fab'. This implies that the anti-TF Fab'-DACHPt/m obtained from
20% Mal-DACHPt/m were a mixture of micelles with and without
Fab'. Therefore, we selected 50% Mal-DACHPt/m for Fab' conjuga-
tion. The hydrodynamic diameter of Mal-DACHPt/m remained close
to 30 nm even after Fab' conjugation (Tables 1 and 2). This might be
reasonable considering the diameter of Fab' as that of a volume-
equivalent sphere of 4e6 nm [46] (Table 2). This relatively small
size of anti-TF Fab'-DACHPt/m could be a significant advantage for
effective extravasation and penetration in stroma-rich tumor tis-
sues of pancreatic cancer [35].

3.3. Binding activity of anti-TF Fab'-DACHPt/m on TF-
overexpressing human pancreatic cancer cells

To study the binding of anti-TF Fab'-DACHPt/m to TF-expressing
cells, human pancreatic cancer BxPC3 cells, which overexpress TF
[47], were exposed to fluorescent-labeled anti-TF Fab'-DACHPt/m
CHPt/m and anti-TF Fab'-DACHPt/m for 1e6 h at 37 �C. The merged images of Hoechst
The mean fluorescence intensity of Alexa 647 in BxPC3 cells from images taken at 1, 4,
Cellular localization of anti-TF Fab'-DACHPt/m after 6 h exposure against BxPC3 cells at
ained by LysoTracker Green (green), nuclei stained by Hoechst 33342 (blue) and their



Table 3
Concentration of drugs for fifty-percent inhibition of the growth of BxPC3 cells.

Cells IC50 [mM]a

Oxaliplatin DACHPt/m anti-TF Fab'-
DACHPt/m

anti-TF Fab'b

BxPC3 23 126 25 N/A

a Determined by CCK-8.
b Exposed for 48 h.
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for 1 h at 4 �C. Then, the amount of micelles bound to the cells was
assessed through flow cytometry. The average fluorescence levels
in the cells treated with anti-TF Fab'-DACHPt/m (blue line) were
more than 15-fold higher than control BxPC3 cells (red line) (Fig. 4),
indicating the promoted cellular binding of these micelles after 1 h
Fig. 6. In vivo antitumor efficacy of DACHPt/m series against human pancreatic adenocarcino
every 4th day from day 0 (*p < 0.01, **p < 0.001 calculated by Two-way ANOVA, Error bars ¼
DACHPt basis, and oxaliplatin for 8 mg/kg; (B) Time profiles of Pt concentration in tumor afte
The doses for DACHPt/m, anti-TF Fab'-DACHPt/m and oxaliplatin were 5 mg/kg on a DACHP
activity experiment (A); (D) The doses for co-injection of anti-TF Fab' and Mal-DACHPt/m (
basis (*p < 0.01, **p < 0.001 calculated by Two-way ANOVA, Error bars ¼ S.E.M.; n ¼ 5).
incubation, while DACHPt/m (green line) did not show any cellular
binding. To confirm whether the enhanced cellular association of
anti-TF Fab'-DACHPt/m results from the specific binding of anti-TF
Fab' to TF on the cell surface, a competition experiment was per-
formed by using 10-fold excess amount of free anti-human TF
F(ab')2. The results demonstrated that the cells treated by anti-TF
Fab'-DACHPt/m and excess anti-human TF F(ab')2 (Fig. 4; black
line) did not show any increase in the fluorescence levels. It is likely
that TF on BxPC3 cells were occupied by the excess free F(ab')2,
thereby restricting the binding sites for anti-TF Fab'-DACHPt/m.
From these results, we concluded that the introduced anti-TF Fab'
on DACHPt/m can selectively bind to TF overexpressed on BxPC3
cells. It is worth noting that only one anti-TF Fab' conjugation to
each micelle promoted such enhanced binding.
ma BxPC3 xenografts. (A) The drugs were injected three times as indicated with arrows,
S.E.M.; n ¼ 5). The doses for DACHPt/m and anti-TF Fab'-DACHPt/m were 3 mg/kg on a
r i.v. administration into BALB/c nude mice bearing BxPC3 subcutaneous tumor (n ¼ 5).
t basis. Error bars ¼ S.E.M.; (C) Relative body weight of the mice during the antitumor
anti-TF Fab' þ Mal-DACHPt/m) and anti-TF Fab'-DACHPt/m were 3 mg/kg on a DACHPt
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3.4. Cellular uptake and in vitro cytotoxicity

To confirm cellular internalization of anti-TF Fab' DACHPt/m in
BxPC3 cells, we performed confocal laser scanning microscopy
(CLSM) evaluationwithfluorescence-labeled anti-TF Fab'-DACHPt/m
and DACHPt/m (Fig. 5). After 1 h incubation, the fluorescence signal
from anti-TF Fab'-DACHPt/m was clearly observed in BxPC3 cells,
while DACHPt/m were barely discernable (Fig. 5A). From 2 h to 6 h
incubation, the red fluorescence signal (anti-TF Fab'-DACHPt/m)was
gradually increased, whereas the fluorescent signal from DACHPt/m
was still significantly weak (Fig. 5A). Quantification of fluorescent
intensity clearly indicated the rapid binding and internalization of
anti-TF Fab'-DACHPt/m against BxPC3 cells (Fig. 5B). By staining the
late endosomes and lysosomes with LysoTracker Green (Fig. 5C;
green), we confirmed the colocalization (Fig. 5C; yellow) of anti-TF
Fab'-DACHPt/m (Fig. 5C; red) and late endosomes/lysosomes in
BxPC3 cells, suggesting that anti-TF Fab' promoted cellular uptake.
This is in good agreement with previous reports regarding the
TF-targeted ADC [47].

The in vitro cytotoxicity of anti-TF Fab'-DACHPt/mwas studied in
BxPC3 cells by exposing to anti-TF Fab'-DACHPt/m, DACHPt/m and
oxaliplatin, which is the clinically approved derivative of DACHPt, for
3 h followed by post-incubation for 48 h. The 50% inhibitory con-
centrations (IC50) of the drugs are summarized in Table 3. The IC50
value of DACHPt/m was higher than that of oxaliplatin, as free oxa-
liplatin is rapidly transported and activated inside the cells, while
DACHPt/m are gradually internalized by the endocytosis and sus-
tainedly release cytotoxic Pt complexes [29]. Nevertheless, the IC50
value of anti-TF Fab'-DACHPt/mwas comparable to that of oxalipla-
tin, i.e. approximately 6-fold lower than that of DACHPt/m. It is
worthy of note that, anti-TF Fab' did not showany in vitro cytotoxicity
against BxPC3 cells under the tested conditions, indicating that the
cytotoxicity of anti-TF Fab'-DACHPt/m can be attributed exclusively
to the enhanced intracellular delivery of cytotoxic DACHPt. The
internalized anti-TF Fab'-DACHPt/m colocalized with late endo-
somes/lysosomes of BxPC3 (Fig. 5C), which may result in the accel-
erated release of DACHPt from the anti-TF Fab'-DACHPt/m due to the
low pH and high chloride ion concentration of late endosomal and
lysosomal compartments [28,29]. Consequently, these results sup-
port that, the introductionof anti-TF Fab' on the surface ofDACHPt/m
may contribute to the substantial improvement of the in vitro cyto-
toxicity through the combination of i) promoted cellular uptake to
TF-overexpressing cancer cells (Fig. 5A) and ii) subsequent efficient
intracellular delivery of DACHPt via endocytosis (Fig. 5C).

3.5. In vivo antitumor efficacy and tumor accumulation of anti-TF
Fab'-DACHPt/m

Encouraged by the high in vitro cytotoxicity of anti-TF Fab'-
DACHPt/m against pancreatic cancer BxPC3 cells, we evaluated the
in vivo antitumor activity against subcutaneous BxPC3 xenografts.
Both DACHPt/m and anti-TF Fab'-DACHPt/m at 3 mg/kg showed
enhanced antitumor effect compared to oxaliplatin at 8 mg/kg
(p < 0.001 and p < 0.01, respectively). Particularly, anti-TF Fab'-
DACHPt/m suppressed the growth of tumors for approximately 40
days (p < 0.01), outperforming DACHPt/m (Fig. 6A). It is worth
mentioning that, even though BxPC3 xenografts present charac-
teristics of intractable pancreatic cancer, including poor vasculari-
zation, perycite-covered vasculature and thick fibrosis, which
impede the access of therapeutic agents [48e50], polymeric mi-
celles with the size smaller than 50 nm showed facilitated pene-
tration and accumulation in this tumor model [35]. Both DACHPt/m
and anti-TF Fab'-DACHPt/m showed similar accumulation in tumor
tissues (Fig. 6B), which is well-consistent with previously reported
antibody-linked nanoparticles [51], indicating that the improved
antitumor efficacy of anti-TF Fab'-DACHPt/m did not result from
enhanced tumor accumulation. Instead, it is reasonable to assume
that the prolonged antitumor efficacy achieved by anti-TF Fab'-
DACHPt/m is attributed to the facilitated cellular uptake by TF-
targeting (Fig. 5) and the resulting improvement of the cytotox-
icity against BxPC3 cells (Table 3). Moreover, at the assessed dosage,
neither DACHPt/m nor anti-TF Fab'-DACHPt/mwere toxic according
to the body weight profile (Fig. 6C). In addition, co-injection of anti-
TF Fab' and Mal-DACHPt/m resulted in lower antitumor activity
than anti-TF Fab'-DACHPt/m (Fig. 6D; p < 0.01), indicating that anti-
TF Fab' may not exert any antitumor effect at the applied dose and
that the thiol-maleimide conjugation of anti-TF Fab' on themicelles
was an effective strategy for enhancing drug delivery.

4. Conclusions

In the present study, we designed and synthesized the DACHPt-
incorporated polymeric micelle equipped with anti-human TF-
targetable Fab' fragment on their surface, and demonstrated the
feasibility of antitumor efficacy against stroma-rich intractable
pancreatic tumors. The utilization of maleimide-thiol chemistry
allowed the successful preparation of anti-TF Fab'-DACHPt/m with
one-to-one tailored conjugation. ComparedwithDACHPt/m, antigen-
recognition ability of anti-TF Fab' facilitated rapid cellular binding and
internalization of anti-TF Fab'-DACHPt/m. Enhanced antitumor effi-
cacy of anti-TF Fab'-DACHPt/mwithout impairing the safety of parent
micelles, as at least suggested from the negligible loss in the body
weight of treated mice, confirmed the advantages of in vivo tumor
targeting by immunomicellar system loaded with platinum drugs,
whicharekeydrugs formanyclinical anticancer therapies, for thefirst
time. This strategy of one-to-one conjugation of Fab' fragment of
antibody topolymericmicellar surfacebymaleimide-thiol coupling is
applicable to a broad variety of cargo molecules and antibodies,
including clinically approved tumor-directed antibodies, without
substantial change in the structure and the size of parent micelles.
Hence, it should provide a universality to deliver therapeutic agents
into stroma-rich intractable tumors with strict limitation in extrava-
sationof carrier systems, includingpancreatic tumoras reportedhere,
and enhance their therapeutic efficacy.
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