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Abstract Reprogramming of adult somatic cells into induced pluripotent stem cells (iPSCs) has

attracted considerable attention in both the scientific and public communities. This is due to the

importance of iPSCs in drug screening, disease modeling, cell transplantation therapies and regen-

erative medicine. A lot of efforts have been devoted to the generation of iPSCs with fewer repro-

gramming factors and with higher efficiencies. It has been shown that removal of reprogramming

barriers increases the efficiency of iPSC generation from differentiated cells up to 90%. Interest-

ingly, having relatively fast cell cycle kinetics, plasticity and endogenous expression of particular

pluripotency regulators make adult stem/progenitor cells potentially elite cells poised to become

iPSCs. Moreover, it has been demonstrated that adult stem/progenitor cells are more amenable

to pluripotent reprogramming than mature cells. Accordingly, it is hypothesized that certain adult

stem cells could be reprogrammed into iPSCs without overexpression of exogenous pluripotency

transcription factors by only combinatorial modulation of barriers and enhancers and relying on

the endogenous expression of key reprogramming factors (e.g. Oct4, Sox2, etc.).
� 2015 Tehran University of Medical Sciences. Published by Elsevier Ltd. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Somatic cells from different species (e.g. mouse [1–4], rat [5,6],

monkey [7] and human [8–11]) have been reprogrammed into
iPSCs by overexpression of pluripotency transcription factors
most commonly Oct4, Sox2, c-Myc and Klf4 (OSKM) in
mouse, and Oct4, Sox2, Nanog and Lin28 in human cells.
Human iPSCs are an important alternative cell source for

patient-specific cell-based therapies due to their ability
for unlimited self-renewal and pluripotent differentiation.
Interestingly, derivatives of pluripotent stem cells have been
introduced to the clinic, representing the promise of a new
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Fig. 1 A schematic representation of the proposed theory. The removal of reprogramming barriers could enable adult stem/progenitor

cells to be reprogrammed into iPSCs without ectopic expression of exogenous factors relying on the endogenous expression of

pluripotency master regulators and appropriate extracellular cues.
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era for regenerative medicine [12–15]. However, the genetic

manipulation of reprogrammed cells limits their applications
in regenerative medicine. This issue highlights the importance
of integration-free reprogramming methods for the generation
of iPSCs. Moreover, pluripotent reprogramming is an ineffi-

cient process due to various defined and undefined barriers
[16]. Indeed, the main drawback of reprogramming is its low
efficiency [17]. It has been assumed that the somatic programs

or somatic gene regulatory networks (GRNs) protect the cells
from aberrant transformations and provide barriers to an effi-
cient reprogramming [18–20]. Pluripotent reprogramming

should overcome the epigenetic state of a differentiated
somatic cell to make it compatible with the pluripotent state.
Thus, an important factor affecting the efficiency of repro-

gramming is the differentiation state of the starting (donor)
cells, which acts as a barrier to efficient epigenetic remodeling
of the genome [21]. Different barriers of reprogramming (p53,
p21, p57, p16Ink4a/p19Arf, Mbd3, etc.) have comprehensively

reviewed elsewhere [16]. It has been demonstrated that removal
of the main barriers of somatic cell reprogramming or
combinatorial modulation of barriers and enhancers

dramatically improves the efficiency of the process to nearly
100% [22,23]. However, somatic programs and epigenetic
barriers of reprogramming seem to be more strict in

differentiated cells than stem/progenitor cells, which are in a
plastic state [21]. Adult stem cells are undifferentiated cells
with plasticity and self-renewal capacity [24,25]. Interestingly,
adult stem and progenitor cells have certain similarities with

pluripotent stem cells, such as the ability to differentiate into
distinct cell types and the expression of specific pluripotency
regulators [26,27]. Furthermore, different studies have con-

firmed that adult stem/progenitor cells are more amenable to
reprogramming than mature cells and can be efficiently
reprogrammed into iPSCs [21,28–32]. This study considers

the possibility of reprogramming of adult stem cells into iPSCs
without ectopic expression of pluripotency transcription
factors by only depletion of barriers and activation of

enhancers (Fig. 1).

The hypotheses/ideas

Considerable efforts have been devoted to developing
various methods for improving the reprogramming efficiency
[16]. Surprisingly, it has been indicated that mouse iPSCs
can be produced by a chemical cocktail and without
reprogramming factors, but with delayed kinetics and low effi-

ciency [33]. This finding shows that induction of pluripotency
in mouse cells can be accomplished in the absence of
reprogramming transcription factors; however, overexpression
of reprogramming factor(s) still is essential for efficient induc-

tion of reprogramming [16]. Adult stem cells and progenitors
are in a plastic state and express certain pluripotency
regulators [25,34–36]. Moreover, findings have demonstrated

that these cells are more amenable to reprogramming than
differentiated cells [21]. It could be suggested that differences
between pluripotency and multipotency arise from distinct

genetic and epigenetic barriers, which lock multipotent stem
cells in a restricted state of potency and prevent them from
aberrant transformations to pluripotency and malignancies.

In addition, stem and progenitor cells do not express
lineage-specific genes, which can hamper reprogramming and
in turn express certain embryonic stem (ES) cell markers
[25,34–36], which could allow their efficient reprogramming.

Therefore, the use of stem/progenitor cells that endogenously
express appropriate levels of pluripotency factors as
starting cells can reduce the number of reprogramming factors

for iPSC production [29,37]. Consequently, it could be
hypothesized that adult stem/progenitor cells can be simply
reprogrammed into iPSCs without overexpression of repro-

gramming factors by only depletion of reprogramming barriers
and application or activation of enhancers (Fig. 1).

Evaluation of the hypotheses/ideas

A large number of reprogramming barriers have
been identified hitherto, including p53-p21 pathway,
Wnt/b-catenin, TGF-b and Hippo signaling pathways,

histone H3 Lysine 9 (H3K9) methylation, histone H3
Lysine 79 (H3K79) methylation, H3K36me2/3 marks,
histone deacetylation and MBD3/NuRD complex [16].

Depletion or inhibition of these barriers has been success-
ful to enhance reprogramming efficiency of somatic cells.
Furthermore, activation of specific genes and pathways

can accelerate the process [16].
Thus, for evaluating the applicability of the induction of

pluripotency in adult stem/progenitor cells without overex-

pression of exogenous reprogramming factors, it is suggested
that chemical or biological molecules (e.g. siRNAs or small
molecules), which can inhibit barriers or activate enhancers
either separately or together, are administered in cultures of
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adult stem cells. Moreover, it is recommended that the
cells are cultured in pluripotent-supportive reprogramming
media.
Discussion

Different methods are developed for enhancing the efficiency

of iPSC production. It has been shown that removal of
reprogramming roadblocks facilitates and accelerates OSKM
reprogramming function [16].

To achieve the minimum number of reprogramming
factors, multiple studies have been done on differentiated cells.
Morrisey and colleagues revealed that expression of the

miR302/367 cluster in combination with Hdac2 suppression
substitutes OSKM and rapidly and efficiently reprograms
mouse and human somatic cells to iPSCs by activating endoge-

nous Oct4 and its targets [38]. Wang et al. demonstrated that
overexpression of high-performance synthetic OCT4-VP16
alone reprograms mouse embryonic fibroblasts (MEFs) into
iPSCs [39]. Therefore, Oct4 activation seems essential for

reprogramming.
Interestingly, pluripotency factor-induced transdifferentia-

tion is a fate conversion approach that uses iPSC transcrip-

tion factor(s) to induce an unstable or plastic cell state in
mature cells [40–48]. The generated plastic cells by this
approach become responsive to environmental cues and can

be transdifferentiated toward various fates [40–48]. In order
to minimize manipulations in this paradigm, it has been
demonstrated that Oct4 alone in combination with short-
term exposure to reprogramming medium is sufficient to

induce a plastic state in human fibroblasts [44–46]. Surpris-
ingly, Salci et al. showed that continued and prolonged
(45–93 days) culture of human OCT4-induced plastic

fibroblasts (plastic hFibOCT4) in a pluripotent-supportive
reprogramming media is sufficient for their pluripotent repro-
gramming [49]. The underlying mechanism of Oct4-induced

plasticity remained to be elucidated, but a possible explana-
tion for this kind of induced plasticity is Oct4-mediated extin-
guishment of native GRNs. Therefore, expression of Oct4

and disruption of the somatic GRNs are critical factors
during successful reprogramming to pluripotency. Various
methods of somatic cell reprogramming have indicated that
the activity of exogenous or endogenous Oct4 is indispensable

during the reprogramming process and there is no substitute
that can replace Oct4’s function in the absence of other
reprogramming factors [49,50].

It has long been known that stem/progenitor cells (e.g. mes-
enchymal stem cells (MSCs)) express certain pluripotency reg-
ulators. For instance, MSCs from human bone marrow

[34,35], adipose tissue, heart, dermis [34] and dental pulp
[25,36] express certain key pluripotency genes (e.g. Oct4,
Nanog, Sox2). Moreover, OCT4 has similar target genes and
regulatory circuitries in human embryonic stem cells (hESCs)

and human bone marrow mesenchymal stem cells (hBMSCs)
[35]. Additionally, there is evidence that shows that tissue
stem/progenitor cells could be initiators or origin of cancer

due to their longevity and self-renewal capacity [51–53]. Fur-
thermore, results from somatic cell nuclear transplantation
have revealed that transferred nucleus of neural stem cells

and keratinocyte stem cells produce cloned embryos more
efficiently than differentiated cells [54,55]. Collectively, these
findings represent adult stem cells as valuable sources for iPSC
production.

To this end, several groups have endeavored to reprogram

adult stem cells and progenitors with more efficiency or with
fewer factors. For instance, it has been revealed that Oct4
and Sox2 can reprogram cord blood-derived CD133+ stem

cells into iPSCs, whereas they are unable to generate iPSCs
from differentiated keratinocytes and fibroblasts [28]. Further-
more, Kim and colleagues showed that Oct4 alone is sufficient

for the generation of iPSCs from mouse and human neural
stem cells (NSCs), which endogenously express Sox2, c-Myc,
Klf4 and SSEA1 [29,37]. Hochedlinger and colleagues
demonstrated that differentiation stage of starting cells has

an intense impact on the efficiency and kinetics of reprogram-
ming, and that hematopoietic stem and progenitor cells can be
reprogrammed 300 times more efficient than terminally

differentiated cells. They demonstrated that hematopoietic
stem/progenitor cells are more amenable to reprogramming
than differentiated cell types because their epigenetic state is

more permissible to transcription factor-induced remodeling
[21]. Similarly, Park et al. revealed that human endometrial
cells, which endogenously express elevated levels of

pluripotency factors are more amenable to reprogramming
to pluripotency than fibroblasts [56]. Moreover, Vidal et al.
recently showed that specific progenitor cells have simpler
requirements than fibroblasts for highly efficient and syn-

chronous reprogramming [23].
These data are indicative of a ‘‘primed” state in stem/pro-

genitor cells for efficient acquisition of pluripotency in defined

conditions [23]. This property may be due to some intrinsic
features of stem/progenitor cells, including expression of stem-
ness related genes, permissible chromatin state, a decreased

level of barriers (e.g. TGF-b and MAP kinase pathways) and
increased levels of genetic and epigenetic facilitators
(e.g. KDM2B) that favor reprogramming [23]. Possibly, differ-

ences between embryonic and adult stem cells can originate
from specific intrinsic barriers, which in a fine tuning process
regulate gene expression levels desired for the maintenance of
pluripotency or multipotency.

There are data that demonstrate that (1) removal of barri-
ers or activation of enhancers can increase the reprogramming
efficiency of mature cells to 100% [22,23] (well discussed by

Ebrahimi [16]), (2) stem/progenitor cells can be reprogrammed
more efficiently than mature cells [21], (3) stem/progenitor cells
can be reprogrammed with fewer factors [29,37], (4) combina-

torial modulation of barriers and enhancers can improve
reprogramming efficiency of stem/progenitor cells to nearly
100% [23]. According to these findings, it may be possible to
convert stem/progenitor cells, which have a reservoir of repro-

gramming transcription factors, into iPSCs without exogenous
expression of pluripotency factors by only depletion of repro-
gramming barriers and activation of enhancers (Fig. 1).

Although this is an interesting concept, it still needs to be con-
firmed by experimental evidence.

Collectively, depletion of barriers and activation of enhanc-

ing pathways could be a very fast, inexpensive, feasible and
accessible method for reprogramming of adult stem/progenitor
cells into iPSCs. Clinically, this approach could be a safe and

efficient method of iPSC derivation from tissues (e.g. dental
pulp, adipose, bone marrow, etc.) taken from patients and pro-
vides promising hopes for stimulation of tissue-specific progen-
itor cells in situ to proliferate and regenerate injuries or
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deficiencies. Moreover, generation of iPSCs without repro-
gramming factors can accelerate the clinical application of
these cells and reprogramming technology in order to regener-

ative purposes.
Overview Box
First question: What do we already know about the

subject?

Low efficiency of pluripotent reprogramming can be
improved by removing reprogramming barriers. The find-

ings demonstrate that adult stem cells are more amenable
to reprogramming than differentiated cells, possibly due
to endogenous expression of certain reprogramming fac-

tors. Suggestively, adult stem cells could be converted into
iPSCs by only depletion of barriers and activation of
enhancers relying on the endogenous expression of speci-
fic pluripotency factors and appropriate extracellular

stimuli.
Second question: What does the proposed theory add to

the current knowledge available, and what benefits does it

have?

Generation of patient specific-iPSCs holds tremendous
promise for the treatment of human disease. If the pro-

posed theory which addressed here is confirmed by future
investigations, safe, integration-free and clinical-grade
iPSCs can be generated more efficiently by a simple
non-integrating technique [57]. Ultimately, this theory

offers a faithful and highly efficient reprogramming
method that could provide powerful tools for research
studies, disease modeling, drug screening and cell trans-

plantation therapies.
Third question: Among numerous available studies, what

special further study is proposed for testing the idea?

It is proposed that adult stem cells derived from vari-
ous tissues (e.g. bone marrow, adipose, dental pulp,
umbilical cord, etc.) are cultured in reprogramming med-

ium containing factors capable of modulation of barriers
(i.e. inhibition) and enhancers (i.e. activation).
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