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Summary

The purpose of this meta-analysis was to evaluate protective effects of glucose–insulin–potassium (GIK) on outcomes after coronary
artery bypass grafting (CABG) or percutaneous coronary intervention (PCI). We systematically searched Medline/Pubmed, Elsevier,
Embase, Web of Knowledge and Google Scholar. A total of 1206 studies were retrieved during the extensive literature search of all
major databases; however, 38 trials reporting the end-point of interest were selected. We performed a pooled analysis of outcomes fol-
lowing PCI: incidence of cardiac arrest [odds ratio (OR) of 0.91; 95% confidence interval (CI): 0.76–1.09; P = 0.3], stroke (OR of 1.71; 95%
CI: 0.37–1.37; P = 0.3), cardiogenic shock (OR of 1.02; 95% CI: 0.92–1.14; P = 0.6), reinfarction (OR of 0.95; 95% CI: 0.81–1.14; P = 0.5) and
mortality (OR of 1.04; 95% CI: 0.96–1.13; P = 0.3); and following CABG: incidence of atrial fibrillation (OR of 0.86; 95% CI: 0.70–1.05;
P = 0.1), incidence of ventricular fibrillation (OR of 0.83; 95% CI: 0.62–1.13; P = 0.2), reinfarction (OR of 0.97; 95% CI: 0.74–1.27; P = 0.8),
infection (OR of 1.04; 95% CI: 0.67–1.62; P = 0.8), length of intensive care unit stay (LIS) [standard mean differences (SMD) of −0.27; 95%
CI: −0.40 to −0.14; P = 0.000], length of hospital stay (LHS) (SMD of −0.035; 95% CI: −0.12 to −0.05; P = 0.4) and mortality (OR of 0.72;
95% CI: 0.41–1.26; P = 0.2). Our results showed that GIK did not have considerable cardioprotective effects. However, patients undergo-
ing CABG seem to be better responders to GIK therapy compared with patients undergoing PCI. Furthermore, in contrast to CABG, GIK
therapy in patients undergoing PCI might be associated with more complications rather than protective effects.

Keywords: Glucose–insulin–potassium • Coronary artery bypass graft • Percutaneous coronary intervention •Myocardial infarction •

Clinical outcome • Atrial fibrillation

INTRODUCTION

Ischaemic heart disease is usually caused by thrombotic occlusion
of major epicardial coronary arteries in the absence of sufficient
collateral blood supply [1, 2]. Infarct size, morbidity and mortality
after myocardial infarction (MI) are considerably reduced by re-
perfusion therapy, such as thrombolysis or primary percutaneous
coronary intervention (PCI) [1, 2]. Coronary artery bypass graft
(CABG) surgery is another type of reperfusion therapy that is often
associated with significant changes of metabolic reactions and in-
flammatory response [3]. An improvement in clinical outcomes
after PCI and CABG may be achieved by therapy strategies influen-
cing cardiac metabolism [4–6]. Myocardial ischaemia evokes,
within minutes, excessive release of catecholamines and produces
metabolic and hormonal reactions, such as significant decrease
in secretion of insulin, and increase in free fatty acids (FFAs) [4–6].
Glucose–insulin–potassium (GIK) has several potential mech-
anisms for improving clinical outcomes after MI. GIK therapy is

associated with reduced amount of circulating FFAs and promotes
the use of glucose as the primary energy substrate for myocardial
tissue [7, 8]. Glucose is less oxygen consuming when compared
with FFAs and has beneficial effects on myocardial function and
membrane stability [9, 10]. Furthermore, insulin activates intracel-
lular signalling pathways that promote cell survival and inhibit
events related to apoptosis [11]. Intracellular levels of potassium
are depleted during ischaemia, whereas provision of potassium
increases its levels within myocytes, thereby raising the threshold
for ventricular arrhythmias [12, 13]. Animal and clinical studies
have shown that GIK therapy has two types of benefits in cardiac
ischaemic syndrome. The first mechanism protects against the
progress from unstable angina pectoris to MI, preserving left
ventricular function; the second one prevents arrhythmias and
cardiac arrest associated with ischaemia-related metabolic derange-
ments [3–10]. This meta-analysis sought to determine the strength
of evidence for the efficacy and safety of GIK therapy on clinical
outcomes after PCI and CABG.
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MATERIALS ANDMETHODS

We systematically searched Medline/Pubmed, Elsevier, Embase,
Web of Knowledge and Google Scholar till 25 July 2014, selecting
clinical trials of interest. The medical subject headings search string for
this literature search was ‘glucose–insulin–potassium’, ‘GIK’, ‘GIP’, ‘PGI’,
and ‘myocardial infarction’, ‘MI’, ‘percutaneous coronary intervention’,
‘PCI’, ‘coronary artery bypass grafting’, ‘CABG’, ‘CAB’. Inclusion criteria
were as follows: (i) randomized controlled trial (RCT); (ii) comparison
of GIK with a control group and (iii) reporting data on the incidence
of post-procedural complications according to the checklist.

Two researchers (Sadegh Ali-Hassan-Sayegh and Ali Mohammad
Dehghan) independently and separately extracted the data from
each trial. Data extracted from each RCT related to PCI included
author’s name, sample size, mean age, gender, details of therapeut-
ic regimens, type of administration, dose of glucose, dose and type
of insulin, dose of potassium and Jadad score; and also the amount
of left ventricular ejection fraction, and incidence of stroke, cardiac
arrest, cardiogenic shock, MI, heart failure (HF), hypoglycaemia,
hyperglycaemia, hyperkalaemia, phlebitis, glucose and potassium
level as well as mortality. Data extracted from each RCT related to
CABG included author’s name, sample size, mean age, gender,
details of therapeutic regimens, type of administration, type of
CABG (on-pump or off-pump), dose of glucose, dose and type of
insulin, dose of potassium and Jadad score; and also the incidence
of atrial fibrillation, stroke, ventricular fibrillation, infections, renal
disease, MI, length of ventilation time, ICU and hospital stay, hypo-
glycaemia, hyperglycaemia, hyperkalaemia, phlebitis, glucose and
potassium level as well as mortality. Subgroup analysis was per-
formed for exploration of heterogeneity between studies according
to: (i) dose of GIK (high or low), (ii) type of infusion (IV or cardiople-
gia) and (iii) type of surgery (on- or off-pump).

All data were analysed by STATA version 11.0 utilizing METAN. A
value of P < 0.1 for the Q test or I2 > 50% indicated significant hetero-
geneity among the studies. Where there was no heterogeneity,
fixed-effect models were preferentially reported. Quality assessment
of RCTs was assessed using the Jadad scale; an overall study quality
score (ranging from 0 to 5) was assigned by each reviewer. Publication
bias was assessed by using funnel plots and Begg’s test. Begg’s test was
based on the rank correlation between the observed effect sizes and
observed standard errors, whereas in Egger’s regression intercept,
which is similar to Begg’s test, actual values were used instead of ranks.
For Begg’s and Egger’s test statistics, two-sided P-values were reported.

RESULTS

A total of 1206 studies were retrieved during the extensive literature
search of all major databases; however, 844 (69.9%) were excluded
after initial review. Of 362 studies included during the initial steps,
324 were excluded owing to insufficient representation of end-
points analysed. Finally, 38 RCTs met the criteria of inclusion and
were used for our meta-analysis. Baseline and demographic charac-
teristics of enrolled studies are presented in Tables 1 and 2.

Study characteristics, effect measures and
outcomes after percutaneous coronary
intervention

Cardiac arrest: Twenty-four thousand eight hundred and forty-six
patients were analysed from six RCTs that reported data on

cardiac arrest (Table 3). After removing two RCTs with two zero-
columns, a total of 24 768 patients from four studies were enrolled
into the analysis. Baseline and demographic characteristics are
presented in Table 1. From all patients, 12 367 cases were allo-
cated to GIK and 12 401 cases to the control group. The overall in-
cidence rate of cardiac arrest was 1.9% (range: 1.4–5%) accounting
for 1.9% in the GIK group and 2% in the control group. GIK
therapy failed to reduce the incidence of cardiac arrest with an
odds ratio (OR) of 0.91 [95% confidence interval (CI): 0.76–1.09;
P = 0.3] in the fixed model. No significant heterogeneity was seen
among the RCTs (χ2 = 4.26, I2 = 29.6, P = 0.2). Begg’s and Egger’s
tests showed that there was no potential publication bias among
the included RCTs (Begg’s test, P = 1.0; Egger’s test, P = 1.0).
Stroke: Four thousand four hundred and twenty-one patients

were analysed from four RCTs that provided data on stroke
(Table 3). From all patients, 2291 cases were allocated to the GIK
group and 2130 to the control group. The overall incidence rate of
stroke was 0.8% (range: 0.5–1.4%) with 0.6% in the GIK group and
0.9% in the control group. GIK therapy failed in reducing the inci-
dence of stroke after PCI with an OR of 1.71 (95% CI: 0.37–1.37;
P = 0.3) in the fixed model. No significant heterogeneity was
observed among the RCTs (χ2 = 5.02, I2 = 40.2%, P = 0.3).
Cardiogenic shock: Twenty-four thousand three hundred and

eighty-two patients were analysed from six RCTs with data on the
incidence of cardiogenic shock (Table 3). Several RCTs with
missing events in both groups were excluded, resulting in 24 304
patients from four studies (Table 3)—12 224 receiving GIK therapy
and 12 080 controls. The overall incidence rate of cardiogenic
shock was 6.04% (range: 2.4–6.4%), accounting for 6.1% in the GIK
group and 5.9% in the control group. Incidence of cardiogenic
shock was not significantly different between both groups with an
OR of 1.02 (95% CI: 0.92–1.14; P = 0.6) in the fixed model. No sig-
nificant heterogeneity was observed among the RCTs (χ2 = 1.0,
I2 = 0.0%, P = 0.8). Begg’s and Egger’s tests showed no potential
publication bias among the included RCTs (Begg’s test, P = 0.497;
Egger’s test, P = 0.497).
Re-myocardial infarction: Twenty-five thousand six hundred and

sixty-three patients from eight RCTs presented data on re-myocardial
infarction (re-MI). Following exclusion of a single RCT with 2 zero-
columns, 25 637 patients from 11 studies remained for the final
analysis (Table 3), with 12 909 cases in the GIK group and 12 728
in the control group. The overall incidence rate of re-MI was 2.4%
(range: 1.1–3.7%), accounting for 2.3% in the GIK group and 2.5%
in the control group. GIK therapy was not associated with reduced
incidence of re-MI after PCI with an OR of 0.95 (95% CI: 0.81–1.14;
P = 0.5) in the fixed model (Fig. 1). No significant heterogeneity
was observed among the RCTs (χ2 = 4.46, I2 = 0.0%, P = 0.6). Begg’s
and Egger’s tests showed that there was no potential publication
bias among the included RCTs (Begg’s test, P = 0.652; Egger’s test,
P = 0.652).
Heart failure: Four RCTs provided outcomes in terms of HF. The

overall incidence rate of progression of HF was 9.1%: 8.3% in the
GIK group and 9.9% in the control group (Table 3). GIK therapy
succeeded in reducing the incidence of progression of HF with an
OR of 0.8 (95% CI: 0.64–0.99; P = 0.04) in the fixed model. No sig-
nificant heterogeneity was observed among the RCTs (χ2 = 4.17,
I2 = 28.1%, P = 0.2).
Mortality: Ten RCTs reported data on death. Mortality occurred

in 8.9% of cases in the GIK group and 8.6% in the control group. In
fact, 1 out of 10 comparisons did not present any postoperative
death in 2 comparative arms; therefore, the remaining 9 RCTs
(27 397 patients) were used to perform the meta-analysis
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(Table 3). GIK therapy had a trend towards increasing the inci-
dence of mortality with an OR of 1.04 (95% CI: 0.96–1.13; P = 0.3)
in the fixed model (Fig. 2). No significant heterogeneity was
observed among the RCTs (χ2 = 12.6, I2 = 36.8%, P = 0.1).

Hypoglycaemia: The overall incidence rate of hypoglycaemia
was 0.4%: 0.7% in the GIK group and 0.1% in the control group
(Supplementary material, Table S3). GIK therapy was associated
with a significantly higher incidence of hypoglycaemia with an OR
of 4.0 (95% CI: 2.42–6.64; P = 0.00) in the fixed model. No signifi-
cant heterogeneity was observed among the RCTs (χ2 = 1.73,
I2 = 0.0%, P = 0.6).

Hyperglycaemia: The overall incidence rate of hyperglycaemia
from three RCTs included was 13.8%, with 18.5% in the GIK group
and 9.2% in the control group (Supplementary material, Table S3).
GIK therapy was associated with an increased incidence of hyper-
glycaemia, with an OR of 2.3 (95% CI: 1.6–3.5; P = 0.00) in the fixed
model. No significant heterogeneity was observed among the
RCTs (χ2 = 0.28, I2 = 0.0%, P = 0.8).

Hyperkalaemia: The overall incidence rate of hyperkalaemia
was 4.2% in the GIK group and 1.6% in the control group
(Supplementary material, Table S3). GIK therapy significantly
increased the incidence of hyperkalaemia with an OR of 2.71 (95%
CI: 2.26–3.24; P = 0.000) in the fixed model. No significant hetero-
geneity was observed among the RCTs (χ2 = 0.71, I2 = 0.0%,
P = 0.3).

Phlebitis: The overall incidence rate of phlebitis from three trials
included was 3.4% in the GIK group and 0.16% in the control
group (Supplementary material, Table S3). GIK therapy significant-
ly increased the incidence of phlebitis with an OR of 20.15 (95%
CI: 12.6–32; P = 0.000) in the random model. Significant hetero-
geneity was observed among the RCTs (χ2 = 6.5, I2 = 69.2%,
P = 0.03).

Mean changes of blood level of glucose and potassium: From 125
patients, 69 cases were allocated to the GIK group and 56 to the
control group (Supplementary material, Table S3). The GIK group
had a trend towards an increased mean level of glucose with an
standard mean differences (SMD) of 10.09 (95% CI: −4.70 to 24.89;

P = 0.1) in the fixed model. A total of 73 patients from 3 RCTs were
analysed in terms of the mean level of serum potassium. Pooled
analysis indicated that GIK had a trend towards an increased mean
level of serum potassium with an SMD of 0.2 (95% CI: −0.05 to
−0.47; P = 0.1).

Study characteristics, effect measures and clinical
outcomes after coronary artery bypass grafting

Atrial fibrillation: One thousand seven hundred and ninety-nine
patients were analysed from 14 RCTs representing outcomes
regarding atrial fibrillation (Supplementary material, Table S1),
with 934 patients in the GIK group and 865 patients in the control
group. The overall incidence rate of atrial fibrillation was 31.1%
(range: 7.5–51%), accounting for 29.6% in the GIK group and
32.8% in the control group. GIK therapy had a trend towards
decreased perioperative atrial fibrillation with an OR of 0.86 (95%
CI: 0.70–1.05; P = 0.1) in the randommodel (Fig. 3). Significant het-
erogeneity was observed among the RCTs (χ2 = 30.03, I2 = 56.7%,
P = 0.005). A subgroup analysis is presented in Supplementary ma-
terial, Table S4. Begg’s and Egger’s tests showed that there was no
potential publication bias among the included RCTs (Begg’s test,
P = 0.412; Egger’s test, P = 0.412).
Ventricular fibrillation: One thousand two hundred and four

patients were analysed from four RCTs that represented outcomes
regarding ventricular fibrillation (Supplementary material,
Table S1), with 631 patients in the GIK group and 573 patients in
the control group. GIK therapy had a trend towards decreased
perioperative ventricular fibrillation with an OR of 0.83 (95% CI:
0.62–1.13; P = 0.2) in the fixed model. No significant heterogeneity
was observed among the RCTs (χ2 = 2.67, I2 = 0.0%, P = 0.4).
Stroke: One thousand two hundred and thirty-two patients were

analysed from three RCTs regarding the incidence of stroke. Only
one RCT did not present any events in both groups and was
excluded, whereas 1166 patients remained for the final analysis
(Supplementary material, Table S1). GIK therapy could not reduce

Table 1: Demographic characteristics of randomized controlled trials on PCI

Jadad Potassium
dose
(mEq/l)

Insulin type and
dose

Glucose
given (%)

Male (%) Mean age
(years)

n Infusion
method

Regimen Author or study
name

C GIK C GIK Total C GIK

3 80 50 IU/l, regular 25 71.6 73.1 62.1 61.5 2478 1374 1374 IV 1.5 ml/kg/h OASIS-6 [14]
2 60 300 IU/l 30 78.9 78.5 58.9 61.4 47 19 28 IV 1.5 ml/kg/h Demircan [15]
4 80 32/20 IU/l 10 67.2 70 60 62 954 460 494 IV 42 ml/h POL GIK trial [16]
3 160 100 IU/l actrapid 30 78.8 85 57 60 73 33 40 IV 1.5 ml/kg/h Ducci [17]
3 60 300 IU/l 30 76 70.4 59 60 52 25 27 IV 1.5 ml/kg/h Yazici [18]
3 160 Variable 20 80.1 74.2 61 59 612 302 310 IV 3 m/kg/h GIPS-I [19]
2 80 Variable actrapid 20 73.9 73.4 61.2 61.8 889 445 444 IV 2 ml/kg/h GIPS-II [20]
2 80 50 IU/l 30 85.2 81.5 60 56 81 27 54 IV Variable Türel [21]
4 80 50 IU/l, regular 25 77.6 77.6 58.6 58.6 20195 10 107 10 088 IV 1.5 ml/kg/h ECLA trial [22]
5 80 50 IU/l 30 69.6 72.5 63.3 63.9 871 460 411 IV 1.5 ml/kg/h Selker [23]
3 64 40 IU/l 20 72.6 71.6 64.1 60.8 312 157 155 IV 1.8 ml/kg/h Pache [24]
2 80 50 IU/l 25 58.3 64.3 63.2 67 26 12 14 IV 1.5 ml/kg/h Li [25]
3 80 50 IU/l 25 68.3 77 60.5 58.2 274 139 135 IV 1.5 ml/kg/h ECLA pilot trial

High dose [26]
3 40 20 IU/l 10 68.3 75.9 60.5 58 272 139 133 IV 1 ml/kg/h ECLA pilot trial

Low dose [26]

C: control group; GIK: glucose–insulin–potassium; IV: intravenously.
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Table 2: Demographic characteristics of randomized controlled trials on CABG

Jadad Potassium dose Insulin type and dose Glucose given Type of CABG Male (%) Mean age
(years)

n Infusion method Regimen Author

C GIK C GIK Total C GIK

4 N.D. 10 IU/l N.D. On-pump 70.9 74.9 64 64 501 258 243 Cardioplegia N.D. Hynninen [27]
2 80 mEq/l 0.1 IU/kg/h actrapid 30% On-pump 85.7 78.3 64 63 44 21 23 IV N.D. Zuurbier [28]
1 0.15 mmol/kg/h 0.12 IU/kg/h actrapid 0.2 g/kg/h On-pump 80 80 56.8 55.1 40 20 20 IV N.D. Wistbacka [29]
1 0.12 mmol/kg/h 0.12 IU/kg/h

Rapid acting
0.6 g/kg/h On-pump 87.5 81.3 54.9 55.9 32 16 16 IV N.D. Wistbacka [30]

2 N.D. N.D. N.D. On-pump 58 70 61.08 62.5 100 50 50 IV N.D. Straus [31]
2 0.25 mmol of

KCL per ml of
50% D/W

0.5 IU/kg actrapid 2.5 ml of 50% D/w
per IU of insulin

On- and
off-pump

91.6 77.2 63.5 63.5 44 22 22 IV N.D. Smith [32]

4 160 mEq/l 650 IU/l regular 50% OPCAB 69.7 60.6 67 64 66 33 33 IV 0.3 ml/kg/h Shim [33]
4 80 mEq/l 160 IU/l regular 5% On-pump 70 36 61.2 57.7 50 25 25 IV 30 ml/h Seied-hosseini

[34]
2 N.D. 1 IU/kg/h 30% On-pump 70 90 56 58 20 10 10 N.D. N.D. Szabo [35]
4 N.D. 10 IU/l N.D. On-pump 74 73.9 63 64 1127 570 557 Cardioplegia N.D. Rao [36]
1 N.D. 10 IU/l N.D. On-pump N.D. N.D. N.D. N.D. 24 11 13 Cardioplegia N.D. Rao [37]
5 N.D. 10 IU/l regular 42 mmol/l and 84

mmol/l
On-pump 100 100 60 62 56 27 29 Cardioplegia N.D. Rav [38]

4 80 mEq/l 70 IU/l actrapid 40% On-pump 81 86.2 63.6 64.4 280 142 138 IV 0.75 ml/kg/h Quinn [39]
2 1.7 mEq/kg and

20 mEq/l
2.1 IU/kg regular and 20 IU/l

regular
1.6 g/kg and 5% On-pump 80.3 78.1 54.4 56.3 391 157 234 N.D. N.D. Lolley [40]

1 Variable Actrapid Variable On-pump 35.7 50 74 72 30 14 16 N.D. N.D. Lindholm [41]
2 10 mEq/h 100 IU as a bolus with a flow of

250 IU/h actrapid
30% On-pump 100 100 63 67 22 11 11 IV N.D. Lindholm [42]

3 80 mEq/l 50 IU/l 25% OPCAB 65 52.4 57.2 61.6 41 20 21 Pulmonary
artery
catheter

1.5 ml/kg/h Lell [43]

2 80 mEq/l 50 IU/l regular 30% On-pump 66.7 73.4 65 60 30 15 15 IV 1 ml/kg/h Lazar [44]
1 80 mEq/l 160 IU/l regular 5% On-pump 66.7 58.3 63.5 63.7 141 69 72 IV 30 ml/h Lazar [45]
1 Variable rate 1 IU/kg/h actrapid 30% variable rate On-pump 75 68.4 67.4 66.8 39 20 19 IV N.D. Koskenkari [46]
4 80 mEq/l 80 IU/l regular 10% On-pump 56.7 58.3 59 61 66 30 36 N.D. 1 ml/kg/h Foroughi [47]
2 0.25 mmol/k/h 1.35 IU/kg/h actrapid 0.5 g/kg/h On-pump 57.1 100 57 60 14 7 7 N.D. N.D. Brodin [48]
2 100 mEq/l 8o IU/l 50% N.D. N.D. N.D. N.D. N.D. 22 11 11 N.D. 1 ml/kg/h Coleman [49]
2 N.D. N.D. 50% On-pump N.D. N.D. N.D. N.D. 60 30 30 IV N.D. Salerno [50]
2 N.D. N.D. N.D. On-pump 100 100 N.D. N.D. 30 15 13 Cardioplegia N.D. Kjellman [51]

N.D.: no data; C: control group; GIK: glucose–insulin–potassium; IV: intravenously; OPCAB: off-pump coronary artery bypass; CABG: coronary artery bypass grafting.
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the incidence of stroke after CABG with an OR of 1.09 (95% CI:
0.54–2.20; P = 0.8) in the fixed model. No significant heterogeneity
was observed among the RCTs (χ2 = 0.48, I2 = 0.0%, P = 0.4).
Renal disease: There were no significant differences between

both groups regarding the incidence of renal disease, with an OR
of 0.62 (95% CI: 0.15–2.51; P = 0.5) in the fixed model with 105
patients included from 2 RCTs (Supplementary material, Table S1).
Re-myocardial infarction: One thousand six hundred and

eighty-five patients from six RCTs were included into the analysis
on re-MI (Supplementary material, Table S1). The overall inci-
dence rate of re-MI was 15.6% (range: 5.1–19.9%) with 15.1% in
the GIK group and 16.2% in the control group. GIK therapy did
not have ability to reduce the incidence of re-MI after CABG
with an OR of 0.97 (95% CI: 0.74–1.27; P = 0.8) using a fixed model.
No significant heterogeneity was observed among the RCTs
(χ2 = 8.65, I2 = 42.2%, P = 0.1). Begg’s and Egger’s tests showed that
there was no potential publication bias among the included RCTs
(Begg’s test, P = 0.851; Egger’s test, P = 0.851).
Infection: Five hundred and seventy-two patients from six RCTs

represented outcomes in terms of infection (Supplementary
material, Table S1) with an overall incidence rate of 18% (range:
4.5–29.5%): 18.1% in the GIK group and 17.8% in the control
group. The incidence of postoperative infection was not signifi-
cantly different between the two groups, with an OR of 1.04 (95%
CI: 0.67–1.62; P = 0.8) in the fixed model (Fig. 4). No significant
heterogeneity was observed among the RCTs (χ2 = 6.84,
I2 = 41.5%, P = 0.1). Begg’s and Egger’s tests showed that there was
no potential publication bias among the included RCTs (Begg’s
test, P = 0.142; Egger’s test, P = 0.142).
Postoperative duration of ventilation: The mean duration for all

trials was 11.2 ± 7 h, with 10.8 ± 9.7 for the GIK and 11.5 ± 4.4 for
the control group (Supplementary material, Table S2). Applying a
random-effect model, pooled analysis revealed that GIK therapy
failed in reducing the duration of ventilation with an SMD of
−0.053 (95% CI: −0.14 to 0.37; P = 0.2). There was significant het-
erogeneity among the studies (χ2 = 362.53, I2 = 97.8%, P = 0.000).
A subgroup analysis is presented in Supplementary material,
Table S4.
Postoperative length of ICU stay: The mean LIS from 11 trials

(1044 patients) included was 46.4 ± 26.6 h, with 42.5 ± 23.2 for the
GIK group and 50.2 ± 29.9 for the control group (Supplementary
material, Table S2). GIK therapy significantly reduced the LIS with
an SMD of −0.27 (95% CI: −0.40 to −0.14; P = 0.000) in the
random-effect model. Significant heterogeneity was observed
among the RCTs (χ2 = 300.3, I2 = 96.7%, P = 0.000). A subgroup
analysis is presented in Supplementary material, Table S4.
Postoperative length of hospital stay: The mean LHS from 12 trials

(2161 patients) included in the analysis was 8 ± 3.9 days with 7.9 ± 4.6
for the GIK group and 8.2 ± 3.2 for the control group (Supplementary
material, Table S2). In terms of the LHS, there were no significant dif-
ferences between the two groups, with an SMD of −0.035 (95% CI:
−0.12 to −0.05; P = 0.4) in the random-effect model. Significant het-
erogeneity was observed among the RCTs (χ2 = 320.3, I2 = 96.6%,
P = 0.000). A subgroup analysis is presented in Supplementary
material, Table S4.
Mortality: Two thousand five hundred and seven patients from

19 RCTs presented outcomes regarding mortality. Following the
exclusion of 10 RCTs with missing events in both groups, 2046
patients were analysed (Supplementary material, Table S2) with
1057 patients in the GIK group and 989 patients in the control
group. The mortality incidence rate was 1.8% in the GIK group and
2.7% in the control group; GIK therapy had a trend towards

Ta
bl
e
3:

Re
po

rt
s
of

cl
in
ic
al
ou

tc
om

es
of

ra
nd

om
iz
ed

co
nt
ro
lle
d
tr
ia
ls
fo
r
PC

Is
tu
di
es

30
-d
ay

m
or
ta
lit
y

Re
-M

I
H
F

C
ar
di
og

en
ic

sh
oc
k

C
ar
di
ac

ar
re
st

St
ro
ke

LV
EF

To
ta
ln

um
be

r
A
ut
ho

r

C
G
IK

C
G
IK

C
G
IK

C
G
IK

C
G
IK

C
G
IK

C
G
IK

92
10

4
43

47
16

5
14

4
63

55
65

60
15

6
N
o
da

ta
24

78
O
A
SI
S-
6
[1
4]

22
44

12
7

N
o
da
ta

11
12

13
21

0
5

N
o
da

ta
95

4
PO

L
G
IK

tr
ia
l[
16

]
N
o
da
ta

N
o
da

ta
N
o
da
ta

N
o
da
ta

N
o
da

ta
N
o
da
ta

45
±
6

46
±
9

73
D
uc
ci
[1
7]

N
o
da
ta

N
o
da

ta
N
o
da
ta

0
0

0
0

N
o
da
ta

N
o
da

ta
52

Ya
zi
ci
[1
8]

27
23

7
4

N
o
da
ta

N
o
da
ta

N
o
da

ta
N
o
da
ta

42
.4
±
11

.7
43

.7
±
11

61
2

G
IP
S-
I[
19

]
8

13
N
o
da

ta
N
o
da
ta

N
o
da
ta

N
o
da

ta
N
o
da
ta

N
o
da

ta
88

9
G
IP
S-
II
[2
0]

1
1

2
1

8
5

N
o
da
ta

N
o
da

ta
N
o
da
ta

N
o
da

ta
27

Tü
re
l[
21

]
97

6
10

04
24

6
23

6
N
o
da
ta

64
0

66
7

15
1

13
9

N
o
da
ta

N
o
da

ta
10

10
7

EC
LA

tr
ia
l[
22

]
28

18
N
o
da

ta
10

6
N
o
da
ta

29
15

N
o
da
ta

N
o
da

ta
46

0
Se
lk
er

[2
3]

5
7

4
6

N
o
da
ta

N
o
da
ta

N
o
da

ta
2

2
N
o
da

ta
31

2
Pa
ch
e
[2
4]

N
o
da
ta

0
0

N
o
da
ta

0
0

0
0

N
o
da
ta

N
o
da

ta
26

Li
[2
5]

16
10

5
4

15
13

8
9

N
o
da

ta
3

2
N
o
da

ta
27

4
EC

LA
pi
lo
tt
ri
al

H
ig
h
do

se
[2
6]

16
8

5
4

15
8

8
5

N
o
da

ta
3

1
N
o
da

ta
27

2
EC

LA
pi
lo
tt
ri
al

Lo
w
do

se
[2
6]

C
:c
on

tr
ol

gr
ou

p;
G
IK
:g
lu
co
se
–
in
su
lin

–
po

ta
ss
iu
m
;H

F:
he

ar
tf
ai
lu
re
;R
e-
M
I:
re
-m

yo
ca
rd
ia
li
nf
ar
ct
io
n;
LV

EF
:l
ef
tv
en

tr
ic
ul
ar

ej
ec
tio

n
fr
ac
tio

n.

ST
A
TE

-O
F-
TH

E-
A
R
T

S. Ali-Hassan-Sayegh et al. / Interactive CardioVascular and Thoracic Surgery 671

http://icvts.oxfordjournals.org/lookup/suppl/doi:10.1093/icvts/ivv222/-/DC1
http://icvts.oxfordjournals.org/lookup/suppl/doi:10.1093/icvts/ivv222/-/DC1
http://icvts.oxfordjournals.org/lookup/suppl/doi:10.1093/icvts/ivv222/-/DC1
http://icvts.oxfordjournals.org/lookup/suppl/doi:10.1093/icvts/ivv222/-/DC1
http://icvts.oxfordjournals.org/lookup/suppl/doi:10.1093/icvts/ivv222/-/DC1
http://icvts.oxfordjournals.org/lookup/suppl/doi:10.1093/icvts/ivv222/-/DC1
http://icvts.oxfordjournals.org/lookup/suppl/doi:10.1093/icvts/ivv222/-/DC1
http://icvts.oxfordjournals.org/lookup/suppl/doi:10.1093/icvts/ivv222/-/DC1
http://icvts.oxfordjournals.org/lookup/suppl/doi:10.1093/icvts/ivv222/-/DC1
http://icvts.oxfordjournals.org/lookup/suppl/doi:10.1093/icvts/ivv222/-/DC1
http://icvts.oxfordjournals.org/lookup/suppl/doi:10.1093/icvts/ivv222/-/DC1
http://icvts.oxfordjournals.org/lookup/suppl/doi:10.1093/icvts/ivv222/-/DC1
http://icvts.oxfordjournals.org/lookup/suppl/doi:10.1093/icvts/ivv222/-/DC1
http://icvts.oxfordjournals.org/lookup/suppl/doi:10.1093/icvts/ivv222/-/DC1
http://icvts.oxfordjournals.org/lookup/suppl/doi:10.1093/icvts/ivv222/-/DC1


decreased incidence of mortality with an OR of 0.72 (95% CI:
0.41–1.26; P = 0.2) in the fixed model. No significant heterogeneity
was observed among the RCTs (χ2 = 6.41, I2 = 0.0%, P = 0.6). Begg’s
and Egger’s tests showed that there was no potential publication
bias among the included RCTs (Begg’s test, P = 0.310; Egger’s test,
P = 0.310).

Hypoglycaemia and hyperglycaemia: The overall incidence rate
of hypoglycaemia was 4.1%, accounting for 5.5% in the GIK group
and 2.8% in the control group. GIK therapy was associated with an
increased incidence of hypoglycaemia of with an OR of 1.9 (95%
CI: 1.15–3.36; P = 0.01) in the fixed model. No significant hetero-
geneity was observed among the RCTs (χ2 = 1.69, I2 = 0.0%, P = 0.4).

Figure 1: Forest plot of OR for GIK therapy on the incidence of reinfarction following PCI (OR <1 favoured GIK and OR >1 favoured control). OR: odds ratio; GIK:
glucose–insulin–potassium; PCI: percutaneous coronary intervention; CI: confidence interval.

Figure 2: Forest plot of OR for GIK therapy on the incidence of mortality following PCI (OR <1 favoured GIK and OR >1 favoured control). OR: odds ratio; GIK:
glucose–insulin–potassium; PCI: percutaneous coronary intervention; CI: confidence interval.
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In terms of hyperglycaemia, two RCTs were analysed, having
revealed that GIK therapy can significantly decrease the incidence
of hyperglycaemia with an OR of 0.34 (95% CI: 0.25–0.45; P = 0.00).

DISCUSSION

Owing to the permanently increasing incidence of ischaemic
heart disease around the world, with increasing incidence rates of

morbidity and mortality and considerably reduced quality of life,
the necessity of finding effective treatment modalities with cardio-
protective characteristics is felt more profoundly than ever [1, 2].
During episodes of cardiac ischaemia, the myocardium converts
from ascorbic carbohydrate metabolism to anaerobic fatty acid
metabolism, which results in the production of metabolites and
free radicals that are toxic to the myocardium and are associated
with arrhythmia and decreased myocardial contractility [5–11].
Insulin as a regulating factor of blood sugar was shown to be

Figure 3: Forest plot of OR for GIK therapy on the incidence of atrial fibrillation following CABG (OR <1 favoured GIK and OR >1 favoured control). OR: odds ratio; GIK:
glucose–insulin–potassium; CABG: coronary artery bypass grafting; CI: confidence interval.

Figure 4: Forest plot of OR for GIK therapy on the incidence of infection following CABG (OR <1 favoured GIK and OR >1 favoured control). OR: odds ratio; GIK:
glucose–insulin–potassium; CABG: coronary artery bypass grafting; CI: confidence interval.
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associated with vasodilatory effects; additionally, when it is admi-
nistered in euglycaemic individuals, it shows anti-inflammatory
and anti-thrombotic effects. The simultaneous administration of
insulin and glucose is known to be a metabolic treatment leading
to the protection of the myocardium against metabolic changes
[7–11]. Several experimental studies reported that administration
of GIK therapy may preserve myocardial perfusion and left ven-
tricular function, as determined by haemodynamic parameters
[52, 53]. The OASIS trial, a large-scale multicentred randomized
trial, revealed that the administration of GIK is not only ineffective
in patients undergoing PCI compared with the control group, but
also results in increased mortality [14]. Our findings demonstrate
that GIK administration in patients undergoing PCI cannot de-
crease the incidence of re-MI, cardiac arrest and carcinogenic
shock compared with the control group. However, it has a signifi-
cant decreasing effect on the progression of HF from mild to
severe. These findings suggest that GIK might not improve the
remaining tissue damage; however, it might prohibit the exacer-
bation of tissue injury. Hence, patients who seek GIK administra-
tion less frequently are exposed to higher risks of HF aggravation.
Furthermore, our results indicate that the number of patients with
complications such as hypoglycaemia, hyperglycaemia, hyperka-
laemia and phlebitis following GIK administration is higher com-
pared with the control group. GIK is inclined to increase the mean
blood glucose and potassium levels; hence, its administration may
be crucial for high-risk patients with metabolic disturbances,
history of uncontrolled diabetes and history of cardiac arrhythmia,
leading to detrimental clinical sequels. The present study, more-
over, reports that GIK is associated with a slight trend towards
increased mortality. Indeed, it is well recognized that a patient’s
glucose level at admission is a stronger predictor of mortality in
the setting of acute MI [54, 55]. Probably, increased mortality risk
following administration of GIK may be related to the manifest-
ation of complications related to drug administration, specifically
in high-risk patients. The study by Mamas et al. [56] argues that
many trials do not show beneficial effects of a low-dose GIK solu-
tion on reducing morbidity and mortality rates because the doses
of glucose and insulin used are not sufficient to suppress FFA
levels. For this reason, we separately analysed the high-dose and
low-dose studies in order to investigate the effects of GIK therapy
more accurately. Our subgroup analysis demonstrates that the
administration of low-dose GIK therapy cannot significantly
reduce re-MI, stroke, cardiogenic shock and cardiac arrest.
However, high-dose GIK therapy can cause a significant decrease
in HF and stroke, yet it has no significant effect on re-MI, cardio-
genic shock and cardiac arrest. Thus, it can be speculated that the
administration of high-dose GIK can hinder the exacerbation
and aggravation of myocardial tissue damage showing cardiopro-
tective properties. However, our findings also indicate that GIK
therapy might slightly increase mortality at both low and high
doses. It is consistent with results from the pilot ECLA trial study,
where no significant differences in terms of mortality were
observed between low-dose and high-dose GIK treatment [26].
In summary, cardioprotective effects of GIK might only
manifest after high-dose treatment, whereas low doses might be
ineffective.

Finally, based on our findings, it can be summarized that al-
though GIK therapy is not able to decrease re-MI, cardiogenic
shock and cardiac arrest in patients undergoing PCI, it can prevent
the exacerbation of HF. On the other hand, the cardioprotective
effects of GIK first appear with higher doses. Furthermore, the inci-
dence of complications, such as hypoglycaemia, hyperglycaemia,

hyperkalaemia and phlebitis might increase with an increase in the
dose of GIK.
In terms of surgical revascularization, surgical stress results in

metabolic changes related to increased neuroendocrine activity,
leading to increased lipolysis, elevated blood glucose levels, impaired
glucose tolerance and peripheral insulin resistance. During ischae-
mia, there is a shift from oxidative lipolysis to anaerobic glycolysis
[57–60]. Following such unfavourable conditions, the parameters
of cardiac functioning and postischaemic clinical consequences
are affected negatively. In this study, we were able to show that, in
patients undergoing GABG, GIK tends to decrease AF, VF and mor-
tality. It can also significantly decrease the LIS, though it is ineffect-
ive in terms of reducing stroke, infections and renal disorders, and
not having beneficial influence on the length of ventilation time
and LHS. Therefore, patients undergoing CABG seem to be better
responders to GIK therapy compared with patients undergoing
PCI, whereas GIK therapy in patients undergoing PCI might be
associated with more complications rather than protective effects.

SUPPLEMENTARYMATERIAL

Supplementary material is available at ICVTS online.
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