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there has been an alteration in the density of serotonergic 
receptors in aging and Alzheimer’s disease, and serotonin 
modulators are found to alter the process of amyloidogen-
esis and exert cognitive-enhancing properties. Here, we dis-
cuss the serotonin-induced modulation of various systems 
involved in mnesic function including cholinergic, dopa-
minergic, GABAergic, glutamatergic transmissions as well 
as amyloidogenesis and intracellular pathways.
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Abbreviations
2PSDT	� Two-platform spatial discrimination task
3xTg-AD	� Triple-transgenic mouse model of Alzheimer’s 

disease
5-HT	� 5-Hydroxytryptamine
AC	� Adenylate cyclase
Ach	� Acetylcholine
AD	� Alzheimer’s disease
APP	� Amyloid precursor protein
ARN	� Anterior raphe nucleus
Aβ	� Amyloid β
cAMP	� Cyclic adenosine monophosphate
cGMP	� Cyclic guanosine monophosphate
CPP	� Conditioned place preference
CREB	� cAMP-response element binding
DA	� Dopamine
DH	� Dorsal hippocampus
DMTS	� Delayed matching to sample
DNPTP	� Delayed non-matching to position
DRN	� Dorsal raphe nucleus
EPAC	� Exchange proteins activated by cAMP
EPSCs	� Excitatory postsynaptic currents
ERK	� Extracellular signal-regulated kinase
FC	� Frontal cortex

Abstract  Serotonin, or 5-hydroxytryptamine (5-HT), is 
found to be involved in many physiological or pathophysi-
ological processes including cognitive function. Seven dis-
tinct receptors (5-HT1–7), each with several subpopulations, 
have been identified for serotonin, which are different in 
terms of localization and downstream signaling. Because 
of the development of selective agonists and antagonists 
for these receptors as well as transgenic animal models 
of cognitive disorders, our understanding of the role of 
serotonergic transmission in learning and memory has 
improved in recent years. A large body of evidence indi-
cates the interplay between serotonergic transmission and 
other neurotransmitters including acetylcholine, dopamine, 
γ-aminobutyric acid (GABA) and glutamate, in the neu-
robiological control of learning and memory. In addition, 
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GABA	� Gamma (γ)-aminobutyric acid
GAD	� Glutamic acid decarboxylase
Gi	� Inhibitory G-protein
Glu	� Glutamate
GPCRs	� G-protein-coupled receptors
Gs	� Stimulatory G-protein
GSK3	� Glycogen synthase kinase 3
i.c.v.	� Intracerebroventricular
i.p.	� Intraperitoneal
i.v.	� Intravenous
LTP	� Long-term potentiation
LTD	� Long-term depression
MAPK	� Mitogen-activated protein kinases
MBN	� Magnocellular nucleus basalis
mGluR	� Metabotropic glutamate receptor
MS/vDB	� Medial septum and the adjacent vertical limb 

of the diagonal band of Broca area
MWM	� Morris water maze
NAc	� Nucleus accumbens
NMDA	� N-Methyl-D-aspartate
NO	� Nitric oxide
ORT	� Object recognition task
PA	� Passive avoidance
PCA	� p-Chloroamphetamine
PDE	� Phosphodiesterase
PFC	� Prefrontal cortex
PI	� Pavlovian/instrumental autoshaping
PKA	� Protein kinase A
PKC	� Protein kinase C
PKG	� Protein kinase G
PKM	� Protein kinase M
PLA2	� Phospholipase A2
PS1	� Presenilin-1
PT	� Pass through
s.c.	� Subcutaneous
SA	� Self-administration
sIPSC	� Spontaneous inhibitory postsynaptic current
VTA	� Ventral tegmental area

Introduction

Serotonin, or 5-hydroxytryptamine (5-HT), plays a pivotal 
role in the cognitive function, and serotonin modulators are 
indicated for the treatment of an array of psychiatric dis-
orders (Boulougouris and Tsaltas 2008; Kiser et al. 2012; 
Meltzer et  al. 2012). A large body of evidence implicates 
the contribution of various serotonin receptors in mnesic 
function (Perez-Garcia and Meneses 2008b; Geldenhuys 
and Van der Schyf 2009), though an interplay between 
serotonin and several other neurotransmitters including 
acetylcholine (Ach), dopamine (DA), glutamate (Glu) and 
γ-aminobutyric acid (GABA) is found to be involved in a 

variety of neurophysiological processes including learning 
and memory (Nic Dhonnchadha and Cunningham 2008; 
Kranz et al. 2010; Lesch and Waider 2012).

Seven distinct families of serotonin receptors with sev-
eral subpopulations have been identified which differ in 
terms of localization and downstream signaling (Barnes 
and Sharp 1999; Hoyer et al. 2002). Except for the 5-HT3 
receptors that are ligand-gated ion channels, the rest belong 
to the family of G-protein-coupled receptors (GPCRs); 
in this regard, 5-HT1 and 5-HT5 receptors are coupled to 
inhibitory G-protein (Gi), whereas 5-HT4, 5-HT6 and 5-HT7 
receptors are connected to the stimulatory G-protein (Gs), 
and 5-HT2 receptors activate Gq/11 (Pytliak et al. 2011).

Several imaging experiments have revealed a profound 
alteration in the density of serotonergic receptors in aging 
and Alzheimer’s disease (AD) (Rodriguez et al. 2012). Fur-
thermore, some of the serotonin modulators are found to 
change the expression or processing of amyloid precursor 
protein (APP) (Payton et  al. 2003; Postina 2012). There-
fore, to elucidate the role of serotonin in memory, it is 
crucial to clarify the detailed interactions with other neuro-
transmitters and second messengers related with mnemonic 
or amnestic effects.

Here, we review the serotonin-induced modulation of 
cholinergic, dopaminergic, GABAergic and glutamatergic 
systems regarding their effects on learning and memory. In 
addition, we discuss the serotonergic modulation of amy-
loidogenesis as well as the intracellular pathways through 
which serotonin influences mnesic function.

The effects of serotonin on cholinergic transmission

Early studies demonstrated that both serotonin and acetyl-
choline enhance performance in one-trial inhibitory avoid-
ance task. Moreover, co-administration of the serotonin 
reuptake inhibitor (alaproclate) and cholinergic agonist 
(oxotremorine) produces synergistic effects on memory 
retrieval. Cholinergic blockade reverses the facilitation 
caused by either this co-administration or cholinergic acti-
vation, but not that caused by serotonergic stimulation (Alt-
man et al. 1987). In addition, transplantation of embryonic 
raphe cells into the hippocampus can improve the impair-
ment of spatial memory caused by a combination of sero-
tonergic/cholinergic deficiencies (Richter-Levin and Segal 
1989). Intrahippocampal grafts of mixed septal–raphe cell 
suspension restore the reduction in Ach concentration due 
to aspirative fimbria–fornix lesions. This effect is recapit-
ulated by septal grafts but to a lower extent, suggesting a 
functional interaction between serotonergic raphe and cho-
linergic septal neurons (Hilgert et al. 2000).

5-HT1A receptors (5-HT1AR) are co-expressed with 
cholinergic markers on medial septum and diagonal band 
of Broca. However, the proportion of neurons expressing 
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both markers vary in dorsal, ventral or septal regions (Kia 
et al. 1996). Blockade of the postsynaptic 5-HT1A receptors 
by NAN-190 or WAY 100635 can ameliorate the scopol-
amine-induced impairment of working memory and spa-
tial learning in passive avoidance (PA) (Misane and Ogren 
2003), object recognition task (ORT) (Pitsikas et al. 2003), 
pass through (PT) (Ohno and Watanabe 1996) or in two-
platform spatial discrimination task (2PSDT) (Carli et  al. 
1997a). In contrast, stimulation of the presynaptic 5-HT1AR 
in dorsal raphe nucleus (DRN) by 8-OH-DPAT corrects 
the errors in choice accuracy caused by intrahippocampal 
administration of scopolamine (Carli et  al. 1998). Moreo-
ver, injection of WAY 100635 into DRN neither altered 
choice accuracy nor affected the scopolamine-induced 
errors, but it did reverse the 8-OH-DPAT mitigation of 
deficits due to scopolamine (Carli et al. 2000). A combined 
sigma/5-HT1A receptors agonist, OPC-14523, reverses sco-
polamine- and age-associated learning and memory deficits 
in passive avoidance or Morris water maze (MWM) (Tot-
tori et  al. 2002). These effects might be mediated by an 
increase in ACh release in dorsal hippocampus (DH; Tottori 
et al. 2002), although some studies demonstrated that non-
cholinergic neurons might play the main role in serotonin 
effects on hippocampal memory processing (Koenig et al. 
2011). Subcutaneous (s.c.) administration of 5-HT1B recep-
tor (5-HT1BR) agonists impairs memory retention in one-
trial PA. Furthermore, the 5-HT1BR antagonist, NAS-181, 
improves performance in PA test in a dose-dependent man-
ner and reverses memory deficit induced by scopolamine 
(when administered prior, but not after, scopolamine) or 
MK-801, N-Methyl-d-aspartate (NMDA) receptor antago-
nist. This effect might be explained by the inhibitory effect 
of these heteroreceptors on cholinergic or glutamatergic 
neurons (Eriksson et al. 2008).

It has been shown that both p-chloroamphetamine (PCA, 
a serotonin releaser) and scopolamine impair the retrieval 
of electric shock avoidance in the step-down test (Mat-
suno et al. 1993). In addition, the 5-HT2 receptor (5-HT2R) 
antagonists, ritanserin and mianserin, ameliorate the defi-
cit caused by PCA but not that induced by scopolamine. 
In contrast, cholinomimetic agents offset both PCA- and 
scopolamine-induced amnesia (Matsuno et al. 1993), sug-
gesting that cholinergic transmission might be downstream 
to 5-HT2R signaling.

The 5-HT3 receptor (5-HT3R) antagonists, Y-25130 
(Ohno and Watanabe 1997), DAU 6215 (also known as Ita-
setron) (Brambilla et  al. 1993), ICS 205930 (also known 
as tropisetron) (Chugh et al. 1991) and ondansetron (Carli 
et  al. 1997b), reverse the scopolamine-induced learn-
ing and memory deficit in different paradigms including 
step-through passive avoidance, dark chamber aversion 
or two-platform spatial discrimination task. Although less 
effective than direct nicotinic or muscarinic agonists, the 

5-HT3R antagonist, WAY100289, was shown to ameliorate 
the impairment of spatial learning caused by lesions to the 
cholinergic projections in nucleus basalis and medial sep-
tal brain regions (Hodges et al. 1995). The 5-HT3R antago-
nist, RS-56812, was also reported to improve performance 
in delayed matching to sample (DMTS) task in monkeys 
(Terry et  al. 1996). On the other hand, 5-HT3R antago-
nist, ondansetron, failed to attenuate scopolamine-induced 
impairments in episodic memory and processing speed in 
healthy volunteers (Broocks et al. 1998).

In vitro experiments revealed that 5-HT4 receptor 
(5-HT4R) activation augmented [3H]choline efflux in elec-
trically stimulated slices of cerebral cortex, hippocampus 
and nucleus basalis magnocellularis; however, it did not 
alter [3H]choline efflux in resting brain slices (Siniscal-
chi et  al. 1999). Likewise, intracerebroventricular (i.c.v) 
administration of the 5-HT4R agonists augmented ACh 
release in the frontal cortex (FC) but not in the striatum or 
DH (Consolo et al. 1994). Moreover, 5-HT4 receptor block-
ade does not affect Ach release, but prevents the facilitatory 
effect of agonists suggesting the lack of constitutive activ-
ity (Consolo et al. 1994). It is also shown that 5-HT4R ago-
nists, BIMU 1 and RS 67333, recover scopolamine-induced 
impairment of performance in Y-maze (Lelong et al. 2003). 
The 5-HT4R knockout mice display similar spatial learn-
ing as well as short- and long-term retention to wild type in 
MWM. However, they are more sensitive to scopolamine-
induced memory deficit, and show less choline acetyltrans-
ferase (ChAT) activity in the septum and the DH (Segu 
et al. 2010). The facilitatory effect of 5-HT4 R agonist, SC 
53116, on spike amplitude and tetanus-induced long-term 
potentiation (LTP) in the hippocampal CA1 is also blocked 
by scopolamine in electrophysiological experiments (Mat-
sumoto et al. 2001).

The 5-HT6 receptor (5-HT6R) antagonist, SB-271046, 
does not influence working memory, aversive learning or 
recognition memory (Da Silva et  al. 2012). However Ro 
046790 or SB 271046, 5-HT6R antagonists, reverse the 
scopolamine- or age- induced defect in novel object dis-
crimination task (Woolley et  al. 2003), PA (Foley et  al. 
2004; Da Silva et  al. 2012), working memory (spontane-
ous alternation task in the T-maze) and conditioned emo-
tion response (Da Silva et  al. 2012), and partially alter 
scopolamine impaired recognition memory (Da Silva et al. 
2012).

The 5-HT7 receptor (5-HT7R) agonist, AS 19, enhances 
memory formation in autoshaping Pavlovian/instrumen-
tal (PI) learning task. This facilitatory effect is blocked 
by SB-269970, the 5-HT7R antagonist, but not by 
WAY100635, 5-HT1AR antagonist (Perez-Garcia and Men-
eses 2005). In addition, AS 19 reverses memory deficit 
due to scopolamine (cholinergic antagonist) or dizocilpine 
(NMDA antagonist) (Perez-Garcia and Meneses 2005), 
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whereas SB269970 augments scopolamine-induced impair-
ment in delayed non-matching to position (DNPTP) task 
(Bonaventure et al. 2011). In contrast, 5-HT7R antagonists, 
SB-269970 and DR 4004, abrogate memory impairment 
due to scopolamine or dizocilpine in autoshaping PI learn-
ing task (Meneses 2004). This controversy may arise from 
the differences in scopolamine dose, strains of rats, the 
forms of memory (consolidation or working) and the proto-
col used in PI and DNPTP tests (Bonaventure et al. 2011).

The alpha7 nicotinic acetylcholine receptor (α7nAChR) 
has been associated with cognitive function as well as anxi-
ety (Toyohara and Hashimoto 2010; Pandya and Yakel 2013). 
Serotonin denervation of the rat prefrontal cortex (PFC) by a 
chemical lesion in the anteroventral DRN changed the pat-
tern of expression of nicotinic cholinoceptors, while α4 
receptors were overexpressed, α7nAChR underwent a signif-
icant decrease in denervated rats (Soria-Fregozo et al. 2013). 
Moreover, the 5-HT1A receptor antagonist, WAY-100135, 
blocked the anxiogenic effects of activation of the α7nAChR 
(Pandya and Yakel 2013). A novel α7nAChR agonist/5-
HT3R antagonist, EVP-5141, restored scopolamine- or age-
induced impairment of memory acquisition and retention in 
the PA task or spatial working memory in water maze. More-
over, EVP-5141 improved both objective and social recog-
nition memory and was not substituted for nicotine in rats 
trained to discriminate nicotine from saline, suggesting less 
potential for abuse (Boess et al. 2013).

In summary, stimulation of the 5-HT7 receptors as well 
as blockade of 5-HT3, 5-HT4 and 5-HT6 receptors seems 
to recover scopolamine-induced memory impairment in 
a variety of experiments. The effects of 5-HT1A ligands 
depend on the activation of pre- or postsynaptic neurons. 
In contrast, the 5-HT1B agonists impair memory reten-
tion possibly through an inhibitory effect on cholinergic 
or glutamatergic neurons. The α7nAChR agonist/5-HT3R 
antagonist has also been shown to produce positive effects 
on both scopolamine- or age-induced memory impairment 
(Table 1). 

The effects of serotonin on dopaminergic transmission

The mesocortical dopaminergic pathway is pivotal to the 
complex cognitive processes including selective attention 
and working memory. Likewise, the mesolimbic dopamin-
ergic pathway is prominent in drug-induced reward and 
addiction memory (Wise and Rompre 1989; Nic Dhonn-
chadha and Cunningham 2008).

It has been shown that 5-HT1A receptors may increase 
or decrease mesolimbic neural firing depending on the acti-
vation of either pre- or postsynaptic receptors (Carey et al. 
2004; Andrews et al. 2005). Moreover, hormesis (low-dose 
stimulation, high-dose inhibition) has been demonstrated 

for the alteration in DA concentration in PFC by 5-HT1AR 
agonists (Diaz-Mataix et al. 2005). Both blockade of pre- 
and stimulation of postsynaptic 5-HT1A receptors augment 
cocaine-stimulated DA release and hyperlocomotion (Carey 
et al. 2004; Andrews et al. 2005). In addition, the 5-HT1AR 
antagonist, WAY 100635, attenuates cocaine- but not cue-
primed reinstatement of cocaine self-administration (SA) 
(Burmeister et  al. 2004). The 5-HT1BR agonists enhance 
cocaine-induced conditioned place preference (CPP) and 
SA (Parsons et  al. 1998; Cervo et  al. 2002). However, 
RU24969, 5-HT1B/1A agonist, interferes with the retrieval 
of cocaine- or sucrose-seeking response following extinc-
tion. These effects are blocked by GR127935, the 5-HT1B 
R antagonist (Acosta et al. 2005). In this regard, 5-HT1BR 
antagonism decreases cocaine-induced DA release and pre-
vents its reinforcing effects (O’Dell and Parsons 2004). 
This suggests that blockade of the 5-HT1B receptors may 
inhibit reinforcement as well as memory formation due to 
drugs of abuse, while agonists at this receptor might help 
decrease the craving during abstinence and relapse.

The activation of 5-HT2A receptors (5-HT2AR) enhances 
dopaminergic activity both in nigrostriatal and in corti-
comesolimbic pathways (Alex and Pehek 2007) possibly 
through glutamatergic neurons (Kalivas et al. 1989; Kalivas 
1993). The 5-HT2AR antagonist, M100907, suppresses cue-
induced reinstatement of cocaine SA and retrieval of addic-
tion-primed memories following extinction (Nic Dhon-
nchadha et  al. 2009). The 5-HT2CR inverse agonists or 
antagonists boost cocaine-mediated DA release in nucleus 
accumbens (NAc) and hyperlocomotion (Filip and Cun-
ningham 2003; Navailles et  al. 2004). Likewise, injection 
of Ro60-0175, the 5-HT2CR agonist, into the ventral teg-
mental area (VTA) diminishes cocaine SA and hyperloco-
motion (Fletcher et al. 2004). Moreover, 5-HT2CR agonists 
decrease contextual cue, cocaine or yohimbine-primed 
lever response and reinstatement of cocaine-seeking behav-
ior after extinction training (Neisewander and Acosta 2007; 
Fletcher et al. 2008). These observations suggest that inhi-
bition of 5-HT2AR and stimulation of 5-HT2CR hamper 
memory formation and retrieval in addiction, and should 
be considered as potential interventions to decrease crav-
ing for drugs of abuse (Nic Dhonnchadha and Cunningham 
2008).

The stimulation of 5-HT3 receptors leads to the depo-
larization of host cells. These receptors are expressed 
presynaptic on dopaminergic terminals (Chen et  al. 
1992), and may increase DA release in the NAc (Jiang 
et  al. 1990). Furthermore, antagonists of this receptor 
are shown to attenuate morphine-, ethanol-, nicotine- or 
cocaine-stimulated DA release in the NAc as well as their 
rewarding effects (Carboni et  al. 1989; Imperato and 
Angelucci 1989; Grant and Barrett 1991; Pei et  al. 1993; 
Campbell and McBride 1995; Rodd-Henricks et  al. 2003; 
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De Deurwaerdere et  al. 2005). Meanwhile, some studies 
have shown that the 5-HT3R antagonists (ICS 205930 or 
MDL 72222) do not influence the discriminative stimulus 

properties of cocaine (Paris and Cunningham 1991). This 
suggests that 5-HT3R activation plays a prominent role 
in the reinforcing effects of drugs of abuse. However, the 

Table 1   Interactions between serotonergic and cholinergic pathways in memory

PA passive avoidance, ORT object recognition task, PT pass through, 2PSD two-platform spatial discrimination, MWM Morris water maze, 
DMTS delayed matching to sample, DNPTP delayed non-matching to position, P/I autoshaping Pavlovian/instrumental, s.c. subcutaneous, i.p. 
intraperitoneal, i.v. intravenous, i.c.v. intracerebroventricular
a  Combined sigma/5HT1A agonist
b  Reverts the memory deficit when administered prior to, but not after, scopolamine
c  In human
d  Partial blockade of scopolamine-induced deficit in episodic-like memory (place recognition)

Receptors Ligand Test Effect on memory 
impairment due to 
cholinergic blockade  
or lesions

References

Agonists Antagonists

5-HT1A OPC-14523a (oral) MWM & PA Improvement Tottori et al. (2002)

8-OH-DPAT (dorsal 
raphe)

2PSD Improvement Carli et al. (1998)

NAN-190 (s.c.), WAY 
100635 (s.c.)

PA Improvement Misane and Ogren 
(2003)

WAY 100635 (s.c.) ORT Improvement Pitsikas et al. (2003)

NAN-190 (intrahip-
pocampal)

PT Improvement Ohno and Watanabe 
(1996)

WAY 100635 (s.c.) 2PSD Improvement Carli et al. (1997a)

WAY 100635 (dorsal 
raphe)

2PSD No effect Carli et al. (2000)

5-HT1B NAS-181 (s.c.) PA Improvementb Eriksson et al. (2008)

5-HT2 Ritanserin and mian-
serin

PA No effect Matsuno et al. (1993)

5-HT3 Y-25130 (intrahip-
pocampal)

PT Improvement Ohno and Watanabe 
(1997)

DAU 6215 (i.p.) PA and hypermotility Improvement Brambilla et al. (1993)

ICS 205–930 (s.c.) PA Improvement Chugh et al. (1991)

Ondansetron (s.c.) 2PSD improvement Carli et al. (1997b)

WAY100289 (s.c.) MWM Improvement Hodges et al. (1995)

Ondansetron (iv)c Word, target, distance 
recall

No effect Broocks et al. (1998)

5-HT4 BIMU 1 and RS  
67333 (i.p.)

Y-maze Improvement Lelong et al. (2003)

SC 53116 (i.c.v.) PA Improvement Matsumoto et al. 
(2001)

5-HT6 Ro 04-6790 ORT Improvement Woolley et al. (2003)

SB-271046  
(oral, i.p.)

PA, T-maze, place 
recognitiond

Improvement Foley et al. (2004),  
Da Silva et al. (2012)

5-HT7 AS 19 (s.c.) P/I Improvement Perez-Garcia and 
Meneses (2005)

SB269970 (i.p.) DNMTP Worsening Bonaventure et al. 
(2011)

SB-269970 & DR  
4004 (i.p.)

P/I Improvement Meneses (2004)

alpha7 nAChR 
agonist/5-HT3 antago-
nist

EVP-5141 (i.p.) PA Improvement Boess et al. (2013)
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potential effect of 5-HT3R modulation on reinstatement 
and retrieval of addiction-induced memories requires fur-
ther investigation. In this regard, a preliminary randomized, 
double-blind, placebo-controlled trial revealed that ondan-
setron failed to affect methamphetamine abuse, withdrawal, 
or craving in humans (Johnson et al. 2008a).

The 5-HT4 receptor antagonists have been shown to 
decrease the morphine-enhanced dopaminergic firing in 
striatum but not in VTA (Porras et  al. 2002). Moreover, 
pretreatment with a mixed 5-HT3R and 5-HT4R antago-
nist, DAU 6285, eliminated morphine-induced place con-
ditioning (Bisaga et  al. 1993). Although these receptors 
have been implicated in cocaine-induced hyperlocomotion 
(McMahon and Cunningham 1999), antagonists at this 
receptor did not influence cocaine- or amphetamine-medi-
ated DA exocytosis (Porras et al. 2002). The role of these 
receptors in potentiation of addictive behaviors is yet to be 
elucidated.

Pretreatment with SB 258510A, the 5-HT6R antagonist, 
potentiates amphetamine- but not cocaine-induced hyperlo-
comotion and SA. Furthermore, it enhances amphetamine-
stimulated DA release especially in the FC (Frantz et  al. 
2002). The 5-HT6R agonist, ST1936, was self-administered 
by the rats, underlining the possible implication of this 
receptor in reinforcement. Furthermore, the 5-HT6R antag-
onist, SB271046, decreased cocaine SA as well as cocaine-
stimulated DA concentration in the NAc shell but not in the 
PFC (Valentini et al. 2013). Likewise, the 5-HT6R antago-
nists, SB-271046 and Ro04-6790, diminished cue-induced 
cocaine-seeking behavior, although they did not influence 
cocaine SA and reinforcement (van Gaalen et al. 2010). In 
addition, overexpression of the 5-HT6 receptors in the NAc 
by viral-mediated gene transfer abolished CPP to cocaine, 
but did not influence cocaine-induced locomotor sensitiza-
tion (Ferguson et  al. 2008). This suggests a potential role 
for 5-HT6 receptors in reward learning as well as retrieval 

of addition-induced memory; antagonists at this recep-
tor may help decrease relapse to the drug of abuse after 
extinction.

Taken together, serotonin receptors appear intriguing 
targets to study emotional/addiction-related learning and 
memory processes. Activation of 5-HT1B and 5-HT2C recep-
tors as well as blockade of 5-HT1A, 5-HT2A, 5-HT2A/2C and 
5-HT6 receptors have been shown to decrease cue/drug-
primed relapse of drug SA (Table 2).

The effects of serotonin on GABAergic/glutamatergic 
transmission

GABAergic interneurons in PFC contribute substantially 
to the inhibition of disproportionate dopaminergic activity 
by atypical antipsychotic drugs. This effect is proposed to 
be the main mechanism of cognitive enhancement by these 
drugs compared to the typical DA receptor blockers (Alex 
and Pehek 2007). Escitalopram, selective serotonin reup-
take inhibitor (SSRI), reportedly boosts object recognition 
memory, and increases dopaminergic neuronal activity in 
VTA- and NMDA-induced currents in pyramidal neurons 
(Schilstrom et al. 2011).

Tryptophan hydroxylase-2 knockdown abolishes sero-
tonin synthesis in the brain. Although these mice devel-
ops serotonergic neurons and projections, there have been 
alterations in GABAergic neurons in limbic regions of 
heterozygote or homozygote animals (Waider et al. 2013).
Mice lacking p11, an adaptor protein of 5-HT1BR, display 
global reduction in hippocampal GABAergic inhibition. In 
addition, 5-HT1BR stimulation impairs emotional memory 
in the wild type, but enhances emotional memory as well 
as hippocampal glutamatergic transmission in adapter p11 
knockout mice (Eriksson et al. 2013). Blockade of the brain 
5-HT1BR by NAS-181 has also been shown to improve 

Table 2   Interactions between serotonergic and dopaminergic pathways in memory

SA self-administration, s.c. subcutaneous, i.p. intraperitoneal
a  Ondansetron did not change methamphetamine abuse, withdrawal or craving in human

Receptors Ligand Test Effect on cue/drug-primed  
reinstatement of SA

References

Agonists Antagonists

5-HT1A WAY 100635 (s.c.) SA No effect/attenuation Burmeister et al. (2004)

5-HT1B RU24969 (i.p.) SA Attenuation/attenuation Acosta et al. (2005)

5-HT2A M100907 (i.p.) SA Attenuation/no data Nic Dhonnchadha et al. (2009)

5-HT2C Ro60-0175 (s.c) SA Attenuation/attenuation Fletcher et al. (2008)

MK 212 (i.p.) SA Attenuation/attenuation Neisewander and Acosta (2007)

SB242084 (i.p.) SA No effect/no effect Burmeister et al. (2004)

5-HT2A/2C Ketanserin (i.p.) SA Attenuation/no effect Burmeister et al. (2004)

5HT3 No dataa Johnson et al. (2008a)

5-HT6 SB-271046 and Ro-04-6790 SA Attenuation/no data van Gaalen et al. (2010)



729Exp Brain Res (2014) 232:723–738	

1 3

memory retention in the PA test. This facilitatory effect 
was reversed by muscarinic (scopolamine) or glutamatergic 
(MK-80) antagonists (Eriksson et al. 2008).

The 5-HT1A receptors are expressed as presynaptic het-
eroreceptors on pyramidal and GABAergic neurons (San-
tana et  al. 2004, 2009) or postsynaptic in hippocampus 
(Carli et al. 2000). Although endogenous serotonin inhibits 
pyramidal firing in medial PFC through 5-HT1A receptors, 
systemic administration of the 5-HT1A receptor agonists, 
8-OH-DPAT, stimulates VTA projecting pyramidal neu-
rons, which thereby results in enhanced firing of mesocor-
tical dopaminergic receptors (Llado-Pelfort et  al. 2012). 
This effect is thought to be mediated through GABAergic 
interneurons, in which 5-HT1A receptor agonists abolishes 
the inhibition of GABAergic interneurons on dopaminer-
gic transmission (Llado-Pelfort et  al. 2012). Injection of 
the 5-HT1AR agonist, 8-OH-DPAT, into the DRN reverses 
the impairment of choice accuracy due to intrahippocam-
pal administration of 7-Cl-Kyn, an NMDA receptor antag-
onist (Carli et al. 2001). In addition, systemic or intrahip-
pocampal administration of the 5-HT1AR antagonist, WAY 
100635, mitigates spatial learning deficit caused by block-
ade of hippocampal NMDA receptors in a two-platform 
spatial discrimination task (Carli et al. 1999; Schiapparelli 
et al. 2005). Intraseptal administration of 8-OH-DPAT does 
not influence spatial memory (in water maze), but impairs 
emotional memory (in PA test); moreover, combination 
of intraseptal 8-OH-DPAT and subthreshold dose of the 
NMDA antagonist causes a profound impairment of spatial 
memory retention as well as mild deficit in spatial acqui-
sition (Elvander-Tottie et al. 2009). Although the localiza-
tion of 5-HT1A receptors in relation to the glutamatergic 
neurons in medial septum and the adjacent vertical limb of 
the diagonal band of Broca area (MS/vDB) is still not char-
acterized (Elvander-Tottie et  al. 2009), in the hippocam-
pus, 5-HT1A receptors are expressed on both glutamatergic 
pyramidal cells and inhibitory GABAergic interneurons 
(Aznar et al. 2003). Postsynaptic 5-HT1A receptors are sug-
gested to be co-located along with NMDA receptors in the 
dendritic compartments (Takumi et al. 1998). NMDA infu-
sion into the magnocellular nucleus basalis (MBN) triggers 
apoptotic neurodegeneration that lasts for several days and 
results in excitotoxic lesions (Harkany et al. 2000). Moreo-
ver, oral postlesion administration of the 5-HT1AR agonists 
(repinotan and 8-OH-DPAT) ameliorates NMDA excito-
toxicity and improves survival of cholinergic neurons and 
memory performance in rats (Harkany et  al. 2001).These 
results indicate a dual role for 5-HT1A receptors in the 
modulation of Glu-induced excitatory input to hippocam-
pus. On the one hand, activation of these receptors may 
hamper the NMDA-induced memory retention, thereby 
enhancing memory deficit caused by NMDA blockade 
(Elvander-Tottie et al. 2009); on the other hand, they may 

ameliorate NMDA-induced excitotoxicity and consequent 
memory deficit (Harkany et al. 2001). Taken together, the 
final outcome of 5-HT1A receptor activation depends on 
(1) their localization in different brain areas, (2) interac-
tion with inhibitory or excitatory neurons, (3) G-protein 
selectivity [5-HT1A receptors are coupled to Gi3 in the ante-
rior raphe nucleus (ARN), while they mainly interact with 
Go proteins in the hippocampus (Mannoury la Cour et  al. 
2006)], and (4) agonist-directed receptor trafficking, and 
consequent adaptive modifications (Kenakin 1995; Li et al. 
1997; Raap et al. 1999; Hensler 2002).

The activation of 5-HT2C/2B but not 5-HT2A receptors 
produces a potent inhibitory effect on the mesolimbic and 
nigrostriatal dopaminergic firing (Di Giovanni et al. 1999; 
Di Matteo et al. 1999). This phenomenon is explained by 
the 5-HT2CR-mediated potentiation of GABAergic inhibi-
tion on dopaminergic neurons (Di Giovanni et  al. 1999, 
2001). Alstonine, a putative antipsychotic agent, decreases 
Glu uptake, which is abolished by the 5-HT2A/2C recep-
tor antagonists. Glu dysfunction is also suggested to play 
a role in social interaction and working memory deficits 
(Herrmann et  al. 2012). Stimulatory output from post-
synaptic 5-HT2A receptors on GABAergic interneurons 
enhances their inhibitory impulse, and may have potential 
therapeutic benefits in hippocampal and amygdala dys-
function (Bombardi and Di Giovanni 2013). In addition, 
M100907, a highly selective 5-HT2A antagonist, facilitates 
LTP in CA1 synapses, and potentiates NMDA responses 
and excitatory postsynaptic currents (EPSCs) due to electri-
cal stimulation of CA1 hippocampal pyramidal cells (Wang 
and Arvanov 1998).

Using a combination of immunohistochemistry and dou-
ble in situ hybridization, it has been shown that 5-HT3A 
receptors are expressed on GABA neurons in the rat telen-
cephalon. This suggests a functional interaction between 
these neurotransmitters (Morales et al. 2004). The 5-HT3R 
signaling influences both emotional and working mem-
ory. Activation of these receptors alters the expression of 
GABA receptor clustering protein, gephyrin, in amygdala 
and hippocampus after cued or contextual fear extinc-
tion, respectively, and may promotes extinction of fearful 
memories (Park and Williams 2012). This suggests the 
possible involvement of GABAergic transmission in ben-
eficial effects of 5-HT3R on memory. In addition, 5-HT3 
receptors affect working memory in the pass-through panel 
gates test. Intrahippocampal administration of the 5-HT3R 
antagonist, Y-25130, recovers the working memory errors 
caused by cholinergic antagonism but not those due to the 
NMDA receptor blockade (Ohno and Watanabe 1997). Ser-
otonergic brainstem projections to hippocampus, via 5-HT3 
receptors, are believed to increase the GABAB-mediated 
inhibition in the dendritic region of pyramidal cells. In this 
regard, the 5-HT3 antagonist, ondansetron, facilitates theta 
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frequency and significantly augments the magnitude and 
duration of LTP due to electrical stimulation in freely mov-
ing rats (Staubli and Xu 1995).

Modulation of the 5-HT6 receptor activity has shown 
promise in the treatment for cognitive disorders. The 5-HT6 
R antagonist SB-271046 increases extracellular Glu levels 
in both FC and DH, but not in striatum or NAc (Dawson 
et al. 2001). The enhancement of excitatory neurotransmis-
sion is involved in the augmented Ach release by 5-HT6R 
antagonists (Marcos et  al. 2006). The 5-HT6R antagonist, 
Ro 04-6790, enhances memory consolidation, and prevents 
delay-induced extinction of object discrimination (King 
et al. 2004). Moreover, post-training administration of Ro 
04-6790 recovers recognition deficit, hypermotility and 
ataxia produced by MK-801, an NMDA antagonist (Pitsi-
kas et al. 2008). Similarly, pretreatment with NMDA antag-
onists prevents the beneficial effects of 5-HT6R blockade 
on memory (King et  al. 2004). In this regard, the favora-
ble effects of 5-HT6 receptor antagonism on memory and 
schizophrenia are reviewed elsewhere (Mitchell and Neu-
maier 2005; Johnson et  al. 2008b; Marsden et  al. 2011). 
The serotonin-6 receptors are co-localized with glutamic 
acid decarboxylase (GAD) in GABAergic neurons within 
multiple brain regions (Woolley et  al. 2004), suggesting 
that increased Glu concentration due to 5-HT6 blockade 
can be indirectly mediated through GABAergic system 
(Dawson et al. 2001; West et al. 2009). The 5-HT6 recep-
tor agonist, E-6801, is also demonstrated to enhance object 
recognition memory mainly through cholinergic and glu-
tamatergic pathways (Kendall et  al. 2011). In this regard, 
combination of sub-effective doses of E-6801 (1  mg/kg) 
with donepezil (indirect cholinergic agonist) or memantine 
(NMDA antagonist) significantly enhances object recogni-
tion memory. Moreover, the efficacy of E-6801 in reversing 
scopolamine (0.5 mg/kg)-induced impairment is compara-
ble to that of donepezil (0.3 and 1 mg/kg) (Kendall et  al. 
2011). In addition, both blockade and activation of 5-HT6 
receptors reverse scopolamine or MK-801-induced mem-
ory deficit in cue-linked emotional fear response (Woods 
et al. 2012). It should be noted that the 5-HT6 R agonists, 
WAY-181187, attenuates LTP, and enhances spontane-
ous inhibitory postsynaptic current (sIPSC) in brain slices 
containing CA1 of the hippocampus through an increase in 
extracellular GABA concentration (West et al. 2009).

The 5-HT7 receptor antagonist, SB269970, alleviates 
object recognition impairment due to the NMDA antago-
nists, phencyclidine (Horiguchi et al. 2011b) and MK-801 
(Bonaventure et al. 2011), but aggravates the deficit caused 
by anticholinergic agents (Bonaventure et al. 2011). Elec-
trophysiological studies on hippocampal slices, however, 
revealed that 5-HT7R activation reverses metabotropic Glu 
receptor-induced long-term depression (LTD) (Costa et al. 
2012).

Activation of the metabotropic Glu 2/3 receptor 
(mGlu2/3R) enhances clozapine alleviation of phencycli-
dine-induced impairment in object recognition. Moreo-
ver, positive effects of clozapine are also reversed by 
LY341495, an mGlu2/3R antagonist, suggesting a possible 
crosstalk between serotonin and metabotropic Glu recep-
tors (Horiguchi et al. 2011a).

In summary, blockade of 5-HT1B and 5-HT7 receptors 
improves memory deficit caused by glutamatergic blockade 
or lesions. In this regard, the effect of 5-HT1A and 5-HT6 
receptors depends on the activity of specific receptors in 
different brain areas, where both agonists and antagonists 
have been shown to produce beneficial effects (Table 3).

The effects of serotonin on amyloidogenesis

The APP is a type I integral membrane glycoprotein in 
mammalian cells. Cleavage of APP at the N-terminus of 
amyloid β peptide (Aβ) by β-secretase or at the C-terminus 
by γ-secretase results in amyloidogenesis and aggregation 
of Aβ in the brain. In contrast, α-secretase activity yields a 
large soluble N-terminal ectodomain named sAPPα into the 
extracellular space, which offers neuroprotective and mem-
ory-enhancing properties (Postina 2012). Degeneration of 
the serotonergic neurons is suggested to be involved in Aβ-
induced cognitive damage in dogs (Bernedo et al. 2009). In 
addition, high tryptophan diet (0.40 g/100 g for 1 month) 
reduced intraneuronal Aβ deposits in triple transgenic 
mouse model of AD (3xTg-AD). This suggests a potential 
benefit for elevated 5-HT content in the reduction in amy-
loidogenesis in AD (Noristani et  al. 2012). Moreover, Aβ 
injection is proposed to cause a transient overexpression of 
5-HT1A receptors in astroglial cells in response to the local 
neuronal loss (Verdurand et al. 2011).

Paroxetine, an SSRI, is shown to decrease APP expres-
sion (Payton et  al. 2003). Moreover, direct infusion of 
serotonin into the hippocampus as well as treatment with 
several SSRIs decreases the levels of Aβ in brain intersti-
tial fluid in presenilin-1 (PS1)/APP double-transgenic mice 
model of AD (Cirrito et  al. 2011). Similarly, imipramine 
and citalopram enhance the secreted APP from primary rat 
basal forebrain neurons (Pakaski et al. 2005). In addition, a 
retrospective positron emission tomography (PET) analysis 
has revealed lower load of amyloid in patients treated with 
anti-depressants (Cirrito et al. 2011); thereby, a variety of 
these agents have been evaluated for cognitive-enhancing 
properties in AD (Rodriguez et al. 2012).

Stimulation of 5-HT2a/2c receptors in cultured 3T3 cells 
accelerates the secretion of the soluble APP mainly through 
phospholipase A2 (PLA2) or protein kinase C (PKC) 
(Nitsch et  al. 1996). Moreover, dexnorfenfluramine, the 
5-HT2CR agonist, as well as meta-chlorophenylpiperazine 
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(mCPP), the 5-HT2b/2cR agonist, increases the soluble APP 
concentration in cerebrospinal fluid of guinea pigs (Arjona 
et  al. 2002). As the production of soluble APP precludes 
the formation of amyloidogenic derivatives, agonists at this 
receptor are potential targets for the treatment of AD.

The 5-HT3 receptors are ligand-gated ion channels, 
which cause neural depolarization and excitation (Maricq 
et al. 1991). Blockade of these receptors is shown to pro-
tect against ischemia-induced injury in hippocampal 
slices (Kagami et  al. 1992) or Aβ (25–35)-induced neu-
rotoxicity in cultured cortical neurons (Ju Yeon and Yeon 
Hee 2005). These effects are contributed to the inhibition 
of Aβ-mediated increase in levels of calcium, Glu, TNF-
α, NF-κB, iNOS, COX-2, active caspase 3, cytochrome c 
and calcineurin phosphatase (Ju Yeon and Yeon Hee 2005; 
Rahimian et  al. 2013). This suggests 5-HT3 blockers as 
potential therapeutic agents for the inhibition of amyloid-
induced neurotoxicity (Fakhfouri et al. 2012).

Activation of the 5-HT4 receptors switches the APP 
metabolism to the non-amyloidogenic pathway resulting 
in the production of sAPPα in cultured CHO cells (Rob-
ert et al. 2001). Moreover, this effect was demonstrated to 
be due to specific alterations in α-secretase activity. The 
pathways downstream of this process has been reported to 
include the cAMP-regulated guanine nucleotide exchange 
factor, exchange proteins activated by cAMP (EPAC) and 
the small GTPase, Rac (Fig. 1) (Robert et al. 2005). Simi-
larly, the 5-HT4R partial agonist, RS67333, increases sur-
vival and prevents the production of Aβ peptide in primary 
cortical cultures of transgenic mice expressing human APP 
(Cho and Hu 2007). The possible correlation of serotonin 

transmission with amyloid plaque formation was also 
investigated in AD patients using PET. No significant 
change was observed in cerebral 5-HT4 receptor density 
in AD patients based on the clinical criteria. In contrast, 
patients with positive Aβ burden displayed upregulation of 

Table 3   Interactions between serotonergic and glutamatergic transmission in memory

PA passive avoidance, ORT object recognition task, PT pass through, 2PSD two-platform spatial discrimination, DNPTP delayed non-matching 
to position, CER conditioned emotional response

Receptors Ligand Test Effect on memory deficit 
due to glutamatergic  
blockade or lesions

References

Agonists Antagonists

5HT1A 8-OH-DPAT (dorsal 
raphe)

2PSD Improvement Carli et al. (2001)

Repinotan and 8-OH-
DPAT (oral)

PA, neural survival Improvement Harkany et al. (2001)

WAY 100635 (S.C., 
intrahippocampal)

2PSD Improvement Carli et al. (1999)

5-HT1B NAS-181 (s.c.) PA Improvement Eriksson et al. (2008)

5-HT3 Y-25130 (intra  
hippocampal)

PT No effect Ohno and Watanabe (1997)

5-HT6 E-6801 (i.p), EMD 
386088 (i.p.)

CER Improvement Woods et al. (2012)

SB-270146 (i.p.) CER Improvement Woods et al. (2012)

5-HT7 SB269970 (i.p.) ORT, DNMTP Improvement Bonaventure et al. (2011), 
Horiguchi et al. (2011a, b)

Fig. 1   The effects of 5-HT4 receptor activation on amyloidogen-
esis. Activation of the 5-HT4 receptors alters α-secretase activity 
and switches the metabolism of amyloid precursor protein (APP) 
toward the generation of soluble form of APP (sAPPα). The pathways 
downstream to the receptor have been reported to include the cAMP-
regulated guanine nucleotide exchange factor, Epac and the small 
GTPase, Rac (Robert et al. 2001, 2005; Lezoualc’h 2007). AC, ade-
nylate cyclase; Gαs, Stimulatory G-protein; EPAC, exchange proteins 
activated by cAMP; Aβ, amyloid beta
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cerebral 5-HT4 receptors (Madsen et al. 2011). This finding 
points to the upregulation of 5-HT4 receptor as a potential 
diagnostic marker in early stages of the disease. Addition-
ally, agonists at this receptor may help reduce the forma-
tion of amyloid deposits (Lezoualc’h 2007).

The 5-HT6 receptors are also positively coupled to ade-
nylate cyclase (AC) activation; therefore, a similar effect to 
that of 5-HT4 receptors (formation of non-amyloidogenic 
derivatives) is conceivable for this subtype, though yet to 
be elucidated (Postina 2012). Meanwhile, antagonists at 
this receptor improve cognitive function in a number of 
hippocampal-dependent tasks (see previous sections) and 
are undergoing clinical trials as novel cognitive-enhancing 
agents for AD (Upton et al. 2008).

Taken together, 5-HT2 and 5-HT4 receptors agonists 
as well as 5-HT3 blockers appear promising therapeutic 
approaches to reduce the progression of neurodegeneration 
in Alzheimer’s disease.

The effects of serotonin on intracellular pathways

Multiple intracellular pathways are involved in neu-
ral plasticity, memory formation and sensitization by 
5-HT. A large body of evidence in vertebrates and/or 
invertebrates indicates that serotonin influences mem-
ory through second messengers and effectors including 
cyclic adenosine monophosphate (cAMP) (Bevilaqua 
et al. 1997; Perez-Garcia and Meneses 2008a; Lee et al. 
2009; McLean et al. 2009), cyclic guanosine monophos-
phate (cGMP) (van Donkelaar et al. 2008), PKC (Byrne 
and Kandel 1996; Barbas et al. 2003), mitogen-activated 
protein kinases (MAPK) (Cammarota et al. 2008; Carlini 
et al. 2012) and glycogen synthase kinase 3 (GSK3) (Pol-
ter and Li 2010).

Serotonin prolongs action potentials and increases neu-
ral excitability, spike duration and synaptic strength in a 
cAMP-dependent manner in marine Aplysia (Goldsmith 
and Abrams 1992). In addition, overexpression of Aplysia 
5-HTapAC1 in mammalian HEK293 cells and in Xeno-
pus oocytes increases cAMP content of the cell. Likewise, 
5-HTapAC1 dsRNA hinders 5-HT-induced cAMP produc-
tion, membrane excitability, spike duration and synaptic 
facilitation in non-depressed or partially depressed syn-
apses (Lee et  al. 2009). The 5-HT1A receptor (negatively 
coupled to AC) agonist, tandospirone, has been shown 
to inhibit hippocampal LTP in vivo (Mori et  al. 2001), 
whereas 5-HT4 R (positively coupled to AC) agonists are 
shown to facilitate LTP (Matsumoto et  al. 2001). In con-
trast, the activation of the 5-HT6 receptors, though posi-
tively couple to AC, attenuates LTP in hippocampus mainly 
through an increase in GABAergic transmission (West 
et al. 2009).

Serotonin modulation of cyclic nucleosides is also 
involved in memory formation and consolidation. Acute 
tryptophan depletion impairs ORT performance in rats 
(Rutten et  al. 2007a). The phosphodiesterase 4 (PDE4) 
inhibitor, rolipram, increases cAMP level and subse-
quently restores memory impairment due to tryptophan 
depletion (Yuan et  al. 2000; Rutten et  al. 2007a). A role 
for cAMP/protein kinase A (PKA)/cAMP-response ele-
ment-binding protein (CREB) in the hippocampus is 
also suggested for memory consolidation downstream 
of 5-HT1A receptors in rats using passive avoidance test 
(Bevilaqua et  al. 1997). In this regard, post-training 
intrahippocampal injection of NAN-190, the 5-HT1AR 
antagonist, increases memory retention in one-trial step-
down test, whereas 8-OH-DPAT, the 5-HT1AR agonist, 
causes retrograde amnesia (Bevilaqua et  al. 1997). Acti-
vation of 5-HT4 receptors by RS 67333 enhances infor-
mation acquisition in object recognition test. Moreover, 
stimulation of 5-HT4 receptors results in the activation of 
particulate PDE in the PFC and the hippocampus (Leval-
let et  al. 2009). The 5-HT4R partial agonist, SL65.0155, 
reportedly increased cAMP production and improved 
learning and memory. Furthermore, it improved scopola-
mine- or age-induced cognitive deficits in the MWM, and 
showed synergistic therapeutic effects when combined 
with rivastigmine (a cholinesterase inhibitor) (Moser et al. 
2002). The 5-HT1A/7R agonist, 8-OH-DPAT as well as 
the 5-HT7R agonist, AS19, facilitated memory formation 
and consolidation in PI autoshaping test. The raphe nuclei 
and PFC have shown higher cAMP contents in trained 
animals treated with AS19, but there has been a reduc-
tion in cAMP levels in the raphe nuclei of those treated 
with 8-OH-DPAT. These results are attributed to positive 
(5-HT7 R) or negative (5-HT1A R) coupling to AC (Perez-
Garcia and Meneses 2008a). Another study reported an 
increased cAMP production in cortical and hippocam-
pal areas following the administration of 8-OH-DPAT 
(Manuel-Apolinar and Meneses 2004). This discrepancy 
could emerge from different time courses in training 
and testing sessions (Perez-Garcia and Meneses 2008a). 
Acute administration of MDMA in rats augmented LTP 
in CA3–CA1 synapses through presynaptic 5-HT2 recep-
tors and postsynaptic DA (D1/D5) receptors (Rozas et al. 
2012). This effect was abolished by PKA inhibitors, sug-
gesting the involvement of cAMP-dependent mechanisms 
(Rozas et al. 2012). Serotonin depletion of olfactory bulb 
impaired conditioned odor preference, which was further 
restored by 5-HT2A/2C agonists (Price et  al. 1998; Yuan 
et al. 2003) or when cAMP levels were increased by adr-
energic stimulation (Yuan et al. 2000) or cilomilast, PDE 
inhibitor, in the neonate rats (McLean et al. 2009).

Long-term potentiation by serotonin in Aplysia involves 
the activation of PKC (Sacktor et al. 1988), protein kinase 
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M (PKM) (Cai et  al. 2011), phosphoinositide 3-kinase 
(PI3K) (Hu et al. 2011), MAPK (Martin et al. 1997) and 
synapsin (Angers et al. 2002; Hart et al. 2011). Long-term 
facilitation in invertebrates and vertebrates involves gene 
expression downstream to CREB. Moreover, serotonin-
facilitated synaptic transmission can be explained by the 
subsequent activation of PKC, which itself causes ubiq-
uitination and degradation of CREB repressor (Upadhya 
et al. 2004). PKC is also the main mediator of serotonin-
augmented membrane excitability at depressed synapses 
(Sacktor et  al. 1988; Byrne and Kandel 1996). The pos-
sible involvement of these signaling pathways in other 
species requires further investigation (Cammarota et  al. 
2008). In this regard, serotonin caused an early depres-
sion (lasting for 30–50  min, via 5-HT1A receptors) or a 
late, long-lasting facilitation (lasting for more than 5 h, via 
5-HT4 receptors) in amygdala slice recordings. The later 
effect was blocked by the inhibitors of PKA and extracel-
lular signal-regulated kinase (ERK), suggesting the possi-
ble involvement of these pathways in serotonin-mediated 
facilitation (Huang and Kandel 2007). Moreover, disinhi-
bition of 5-HT1AR/MEK/Arc or stimulation of 5-HT4R/
MEK/Arc signaling cascades improved emotional memory 
in PA test in genetic models of depression (Eriksson et al. 
2012).

Although cGMP/protein kinase G (PKG)/nitric oxide 
(NO) pathway is involved in memory formation and con-
solidation (Blokland et al. 2006; Rutten et al. 2007b), the 
possible involvement of these pathways in serotonin-medi-
ated alteration in cognitive functions is yet to be eluci-
dated. In this regard, it is reported that PDE-5 inhibition, 
which reduce cGMP degradation, mitigates the impairment 
of objective memory due to acute tryptophan depletion in 
male Wistar rats (van Donkelaar et al. 2008).

Conclusion

The effects of serotonin on memory depend on the activa-
tion of pre/post-synaptic serotonergic receptors located on 
distinct subsets of neurons. To add to the complexity, in 
different experimental settings, activation of these recep-
tors leads to the effects, which are not always consistent. 
Many of these effects are produced through the modifica-
tion of cholinergic, dopaminergic, GABAergic or gluta-
matergic transmission. As discussed here, the activation 
state of serotonin receptors can affect memory deficits due 
to muscarinic/glutamatergic blockade or lesions. Moreo-
ver, serotonin receptor ligands influence emotional/fear-
ful learning and memory. Interestingly, 5-HT3R antago-
nists as well as 5-HT4R agonists have been demonstrated 
to decrease amyloidogenesis and appear promising in the 
treatment for Alzheimer’s disease.
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