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a b s t r a c t

During embryonic life a group of cells become proliferated, migrated and differentiated to develop central
nervous system. Migration has been suggested to be due to accumulation of polysialic acid (PSA), a neg-
atively-charged glycoside, on the outer cell membrane. The same event happens to PSA in a tumor mass
as well. Polysialylation is the product of polysialyl transfrase isozymes; STX (ST8SIA2), the embryonic
active isoform, and PST (ST8SIA4), expressed in adults CNS. Additionally, cAMP concludes to activation
of PKA and EPAC resulting to the initiation of gene expressions which are highly required during devel-
opment. EPAC, the latter known target of cAMP in mammalian nervous system, has proliferative proper-
ties in the developing CNS. We propose for the proper action of EPAC, namely CNS development, the
presence of STX and its elevation after EPAC activation is mandatory. This hypothesis is put forward after
observing, in a preliminary experiment, a relationship between EPAC activation and STX mRNA expres-
sion levels in rat hippocampus. The interaction between EPAC and STX may be suggested to be through
EPAC-induced gene expression of the latter. From the above assumptions one may suggest the use of
EPAC activators as neurogenesis inducers and its inhibitors as tumor modulators.

� 2013 Elsevier Ltd. All rights reserved.
Background

cAMP pathway

Cyclic adenosine monophosphate (cAMP) is the second messen-
ger of the receptors which are coupled to Gs proteins. It relays sig-
nal from cell membrane to the next response transducer agents
after its production by adenylyl cyclase. Cyclic nucleotide-gated
and hyperpolarization-activated channels, cyclic nucleotide-acti-
vated ion channels, protein kinase A (PKA) and exchange protein
directly activated by cAMP (EPAC) are the known targets of the
cAMP [1]. Among these, PKA and EPAC activation initiate the phos-
phorylation cascade including ERK (extracellular signal-regulated
kinase), Rap (Ras-related protein), Rho [2,3] and phospholipase C
[4]. The phosphorylations could conclude to activation of nucleus
targets following by gene expression and new protein synthesis.

NCAM and PSA-NCAM

NCAMs (Neural Cell Adhesion Molecules) of the CAM’s immu-
noglobulin superfamily, mediate neural development by their
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homophilic and heterophilic interactions. They involve in neurite
outgrowth, cell migration, differentiation, synaptogenesis and sur-
vival procedures [5–8]. In spite of their zipper role in adhesion of
neurites, NCAM interactions could initiate intracellular signals
[9]. NCAMs are expressed in growth cones and construct cell–cell
contacts. However, the controlling process of their gene expres-
sions are largely unknown [10].

NCAM is affected by several posttranslational modifications
such as polysialylation. Polysialic acid (PSA), an a2,8-linked poly-
mer of sialic acid, was discovered for the first time by Jukka Finne
in a developing brain [11]. Negative charges which surround PSA
polymers absorb more water molecules near the outer cell mem-
brane which leads to repulsion and increasing distances between
cells during cell migration in the developing CNS [12]. Polysialyla-
tion is the product of two isozymes; ST8SIA2 (STX), predominantly
expressed during embryonic life, and ST8SIA4 (PST), responsible
for polysialilation of NCAM in adults rat brain [13].
CNS development

Involvement of cAMP
cAMP has a dominant role in axon formation during neuronal

development. The decline of cAMP activity is the characteristic of
the later stages of vertebrate embryogenesis which keeps going
down during postnatal and adult neural growth [14]. Since the in-
crease of cAMP levels is accompanied with axon outgrowth and
guidance in neural regeneration following injury [15], the same
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phenomenon may also be involved in CNS developement. Thus, in
embryonic life neural growth study, investigations of the cAMP
pathway and the involved proteins are mandatory.

Proliferation
PKA and EPAC as downstream effectors of cAMP exert comple-

mentary effects in controlling cAMP-stimulated cell proliferation.
Thus, the extent of proliferation can differ depending on PKA or
EPAC activity. The effects of EPAC activity on proliferation is con-
firmed by several experiments. For instance, cAMP is shown to
be involved in the rat thyroid cell proliferation with EPAC and
PKA synergistically acting in nucleotide-mediated mitogenesis
[16]. On the other hand, the anti-proliferative property of EPAC
by cAMP is still controversial. There are studies which suggest that
the increased PKA activity is responsible for anti-mitogenic effect
of elevated cAMP. Other reports indicate the involvement of PKA-
independent mechanisms, including EPAC over-expression, for
anti-proliferative effects of cAMP [16].

Axon outgrowth
Myelination is the result of cAMP reduction in the mature neu-

rons. Returning cAMP levels to embryonic stage causes axon regen-
eration of the mature neurons [15]. This function of cAMP is
mediated by PKA in two phases: initial phase by inhibition of
Rho [17] and the later one involvement of transcription factor
(CREB) activation [18]. Rho GTPase mediates axon regeneration
inhibitory properties of myelin proteins and chondroitin sulphate
proteoglycan [19]. Furthermore, applying PKA specific siRNA leads
to deficit in axon outgrowth [20].

Axon guidance
cAMP level changes modulate attraction and repulsion of the

growth cone leading to axonal guidance in a developing CNS. Expo-
sure to cues like acetylcholine, neurotrophin-3, brain derived neu-
rotrophic factor (BDNF) and netrin-1 induces increased
intracellular activity of cAMP followed by cone attraction, while
repulsion is a consequence of low activity [21]. For example, stim-
ulation of netrin enhances PKA activation and subsequently influ-
ences axon guidance through localization of the related receptors
[22]. PKA and EPAC, the downstream effectors of cAMP, seem to
mediate different signaling mechanisms on growth cone in embry-
onic and adult neurons. Thus, the EPAC or PKA activity can verify
whether the response to a guidance cue will be attractive or repel-
lent. Whilst high levels of EPAC results to attraction in the embry-
onic life, activation of PKA favors repulsion in adult neurons [23].
(b)
Hypothesis

We propose a hypothesis that differentiates the regulatory and
proliferatory properties of the cAMP pathway in the CNS. The reg-
ulatory roles could be attributed to PKA, whilst proliferative ac-
tions are EPAC-mediated. Therefore, modulation of cAMP
pathway by manipulation of related enzymes might have benefi-
cial effects in clinical settings directly related to embryonic or adult
neurogenesis.
Fig. 1. St8sia2 (a) and St8sia4, (b) mRNA expression of 8-Br-cAMP (1.25 lg), and 8-
pCPT-20-O-ME-cAMP (5 lg) in the 3 days treated hippocampi. Y axis demonstrates
fold changes in mRNA expression levels relative to control group. The mRNA levels
in hippocampus of all groups are normalized with mRNA levels of Gapdh. Data are
presented as Mean ± STD (n = 4, P < 0.05 considered as significant difference).
Empirical data

The idea of the present hypothesis is originated from our previ-
ous experiment regarding the hippocampal cAMP pathway func-
tions on rat’s passive learning and memory. In exploring the
probable role of cAMP signaling on the expression of NCAM and
polysialylating enzymes, qRT-PCR data revealed a relationship be-
tween EPAC and St8sia2.
Briefly, 8-pCPT (8-(4-chlorophenylthio)-20-O-methyladenosine-
30,50-cyclic monophosphate), an EPAC activator, and 8-Br-cAMP, a
selective PKA activator, were injected into hippocampus bilaterally
through a guidance cannula for three consecutive days. After
behavioral test, the rats’ hippocampi were collected for evaluation
of the proteins changes. Total RNA were extracted and cDNA was
synthesized through Maniatis protocol [24]. Quantitative real-time
PCR experiments were done using QuantiFast SYBR Green PCR Kit,
rat’s St8sia2, St8sia4 and Gapdh primers (Qiagen, Germany). Prod-
ucts specificity was confirmed using agarose gel electrophoresis
and melting curve analysis. Changes in expressions were calcu-
lated using 2�DDC

T method [25] and were presented as fold
changes in expression using REST 2008 software.

St8sia4 (PST) mRNA expression levels were decreased in 8-Br-
cAMP - treated and were not changed in 8-pCPT treated hippo-
campi (Fig. 1a). The unexpected results were obtained in expres-
sion levels of STX mRNA of the tissues which were received 8-
pCPT; as +4 and �2-fold changes in EPAC and PKA activated hippo-
campi, respectively (Fig. 1b).
Evaluation of the hypothesis

There are a lot of proteins involved in developmental processes
of embryonic life of which some will continue to play a regulatory
role through the adult life as well. Regarding neuronal develop-
ment in embryonic life, some proteins play a dominant role while
others will have an increasing pattern in the later stage.

EPAC expression is under constant regulation during CNS devel-
opment. Microarray data reveal that Pka (Prkaca and Prkacb)
expression has an ascending profile in the CNS of the developing
mouse [26] while EPAC1, the active isomer, expression shows
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descending trend during development and postnatal rat brain,
spinal cord and dorsal root ganglion [27].

Intracellular signal transduction is dependent to kinases as key
regulators of a developing brain and cAMP is known as a major
propagator of the kinase activation. Moreover, there are couples
of anti-tumor substances which act through inhibition of these en-
zymes like multi-kinase inhibitors and some new compounds
[28,29]. Due to over-expression of EPAC in human pancreatic duc-
tal adenocarcinoma cells, applying selective inhibitor of EPAC re-
sulted to antitumor properties without involvement in regulatory
kinase [30]. On the other hand, stimulating roles of PSA in tumor
cell growth, differentiation [31] and invasion [32] have been re-
ported. PST expresses in normal and tumor tissue, in contrary to
STX (the embryonic isoform) which only expresses in proliferative
tumor cells [33].

As mentioned in the section of experimental procedure, follow-
ing the EPAC activation, we have observed an increase in St8sia2
mRNA expression while, following PKA activation a decrease in
St8sia2 expression was observed.

If one extrapolates the present data of the hippocampus to en-
tire nervous system, it can be concluded that expression of STX in a
developing CNS is dependent on EPAC activation. However, the
present data does not rule out the involvement of other cAMP re-
lated proteins and other signaling pathways affecting on expres-
sion of proteins, a subject which needs further experiments.

Relation between STX/PST expression and EPAC/PKA activation
has not been investigated yet in neuronal cells. Both STX and EPAC
show proliferatory properties with the same time pattern of
expression in the embryonic life. Based on the above observations,
EPAC inhibitors can be suggested as a new anti-tumor therapy tool.

It is possible to induce neural sprouting by controlling EPAC func-
tion on NCAM modifications [34]. Therefore, administration of EPAC
enhancers can stimulate neurogenesis in a clinical approach.

The mechanism of how cAMP levels could modify the growth
cone response to axonal guidance is still not fully understood.
The involvement of EPAC may be regarded as key regulator of this
pathway.
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