Repository of Research and Investigative Information

Repository of Research and Investigative Information

Shahid Sadoughi University of Medical Sciences

Blockage of Wnt/β-catenin Signaling Pathway in Colorectal Cancer Resistant Cells by Nitazoxanide Effects on Peptidylarginine Deiminases Expression

(2022) Blockage of Wnt/β-catenin Signaling Pathway in Colorectal Cancer Resistant Cells by Nitazoxanide Effects on Peptidylarginine Deiminases Expression. Asian Pacific Journal of Cancer Prevention. pp. 3215-3222. ISSN 15137368 (ISSN)

Full text not available from this repository.

Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

Background: Multidrug resistance (MDR) is a major cause of unsuccessful cancer treatment in which drugs are not effective. Therefore, it is necessary to identify the critical mechanisms of the development of MDR and target those with novel compounds. Accordingly, the current study is the first to investigate the combination effect and molecular mechanism of nitazoxanide (NTZ) and oxaliplatin (OXP) on LS174T/OXP-resistant cells. Methods: The effect of NTZ on OXP cytotoxicity in LS174T and LS174T/OXP cell lines was evaluated by MTT assay. Changes in expression levels of MDR1, MRP1, CTNNB1, peptidylarginine deiminase (PAD)2, and PAD4 genes and proteins were evaluated by RT-qPCR and western blotting methods, respectively. Lastly, the apoptosis assay was performed by flow cytometer. Results: OXP resistant and sensitive cells were identified based on the IC50 values (11567 nM vs. 1745 nM, p<0.05 for 24 h treatment; and 5161 nM vs. 882 nM, p<0.05 for 48 h incubation). The combination of NTZ and OXP for 48 h led to a reduction in IC50 values in resistant cells (2154 nM, p<0.05). The effect of NTZ plus OXP significantly decreased the expression of MDR1 (p<0.001), MRP1 (p<0.05), and CTNNB1 (p<0.001), while PAD2 and PAD4 expression was significantly increased (p<0.001). This combination therapy enhanced the percentage of the sub-G1 population (apoptosed) compared to other groups. Conclusion: The results showed that NTZ leads to notable upregulation of PAD2 and PAD4, which can disrupt the Wnt/β-catenin signaling pathway and reverse the MDR by reducing MDR1 and MRP1 expression. © This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License.

Item Type: Article
Keywords: Catenin Colorectal cancer Multidrug resistance Nitazoxanide Peptidylarginine deiminase Wnt/β Cell Line, Tumor Colorectal Neoplasms Drug Resistance, Neoplasm Humans Nitro Compounds Oxaliplatin Protein-Arginine Deiminases Thiazoles Wnt Signaling Pathway nitro derivative protein arginine deiminase thiazole derivative colorectal tumor drug resistance genetics human metabolism tumor cell line Wnt signaling
Page Range: pp. 3215-3222
Journal or Publication Title: Asian Pacific Journal of Cancer Prevention
Journal Index: Scopus
Volume: 23
Number: 9
Identification Number: https://doi.org/10.31557/APJCP.2022.23.9.3215
ISSN: 15137368 (ISSN)
Depositing User: ms soheila Bazm
URI: http://eprints.ssu.ac.ir/id/eprint/34440

Actions (login required)

View Item View Item