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Objective: While sperm freezing (cryopreservation) is an effective method for preserving fertility, it can potentially harm the structure and 
function of sperm due to an increase in the production of reactive oxygen species. This study aimed to assess the impact of zinc oxide 
nanoparticles (ZnONPs) and selenium oxide nanoparticles (SeONPs) on various sperm functional parameters, including motility, plasma 
membrane integrity (PMI), mitochondrial membrane potential (MMP), acrosome membrane integrity (ACi), and malondialdehyde (MDA) lev-
els. 
Methods: Semen samples were collected from 20 Albino Wistar rats. These samples were then divided into six groups: fresh, cryopreserva-
tion control, and groups supplemented with SeONPs (1, 2, 5 µg/mL) and ZnONPs (0.1, 1, 10 µg/mL). 
Results: Statistical analysis revealed that all concentrations of SeONPs increased total motility and progressive reduction of MDA levels com-
pared to the cryopreservation control group (p<0.05). However, supplementation with ZnONPs did not affect these parameters (p>0.05). 
Conversely, supplements of 1 and 2 µg/mL SeONPs and 1 µg/mL ZnONPs contributed to the improvement of PMI and ACi (p<0.05). Yet, no 
significant change was observed in MMP with any concentration of SeONPs and ZnONPs compared to the cryopreservation control group 
(p>0.05). 
Conclusion: The findings suggest that optimal concentrations of SeONPs may enhance sperm parameters during the freezing process.
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therapy, as well as other applicants. This process allows sperm to be 
stored for an extended period and used in assisted reproductive 
methods [1]. While sperm freezing can enhance the success of assist-
ed reproductive techniques, it can also damage the sperm's structure 
and disrupt the vital parameters necessary for successful conception. 
For instance, the formation of intracellular ice crystals and the in-
crease in solute concentration following this process can be detri-
mental to sperm, threatening cell survival [2]. The damage resulting 
from freezing can be associated with the cryopreservation method 
used.  

The vitrification method is an effective technique for sperm freez-
ing, as it prevents the formation of ice crystals [3]. This method is saf-

Introduction 

Freezing is a technique used to preserve fertility in young men 
with cancer who are candidates for chemotherapy and radiation 
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er, less expensive, and quicker than other sperm freezing methods 
[4,5]. Regardless of the method used, the sperm freezing process can 
negatively impact sperm quality due to the excessive production of 
free oxygen radicals and subsequent oxidative stress. Free radicals 
produced during the freezing and thawing process can cause oxida-
tive stress. After thawing, these free radicals can disrupt the function-
al parameters of sperm, such as cell membrane potential, mitochon-
drial membrane potential (MMP), motility, viability, and the activity 
of intracellular enzymes [6]. 

Spermatozoa are male sex cells that have low cytoplasmic antioxi-
dant content to combat oxidative stress. Therefore, supplementing 
the freezing environment with antioxidants, vitamins, and minerals 
can be effective in preventing oxidative damage and maximizing 
fertilization success [7-9]. Nanoparticles possess unique biological 
properties and low toxicity, making them capable of penetrating bi-
ological barriers [10,11]. These compounds, which have features 
such as higher absorption, surface area, surface charge, reactivity, 
and antioxidant properties, can be used to improve freezing proto-
cols [12]. 

Zinc is an important element for maintaining reproductive func-
tions such as steroidogenesis, sperm membrane stabilization, acro-
some reaction, and the maintenance of chromatin structure, tail 
structure, and motility. Insufficient zinc consumption can cause oxi-
dative damage to sperm by disrupting antioxidant defense and DNA 
repair processes [13,14]. Zinc oxide, due to its high zinc content and 
absorption rate, is the most common form of zinc [15] zinc oxide 
nanoparticles (ZnONPs), with diameters between 1 and 100 nm, are 
an important product derived from zinc. They have recently been 
used in extensive animal experiments due to their impact on the re-
productive system's performance [16,17]. Selenium is a vital compo-
nent of the antioxidant enzyme glutathione peroxidase, which helps 
reduce free radicals as a cofactor. In the form of selenite, selenium 
protects cells from oxidative damage with a detoxification effect 
[18,19]. Studies have shown that selenium oxide nanoparticles 
(SeONPs) are less toxic than selenite compounds [20]. Recent reports 
have highlighted positive results from the presence of selenium 
nanoparticles in sperm freezing extenders of different species on 
sperm parameters [16,21-23]. 

The aim of this study was to evaluate the effect of zinc oxide and 
selenium oxide nanowires on the functional parameters of rat sperm 
during the vitrification freezing method. 

Methods 

1. Animals 
Sperm samples were collected from 20 adult male Albino Wistar 

rats, aged 10 to 12 weeks and weighing 150 to 200 g. These animals 

were supplied by the Garmsar University Laboratory Animal Care 
Center and maintained under standard conditions. These conditions 
included a temperature of 22±2 °C, relative humidity of 55%±10%, a 
light and dark cycle of 12 hours each, and access to nutritious food 
and clean water. All these measures were in accordance with the 
regulations required for the care of laboratory animals. 

2. SeONP and ZnONP nanoparticles 
The zinc and selenium nanoparticles used in this study were 25-

nm colloidal particles (Nanozino). These drugs were first dissolved in 
distilled water, and the solutions were then adjusted to the desired 
concentrations. 

3. Semen collection 
To prepare the sperm samples, mice were euthanized using the 

spinal dislocation method and procedures were conducted under 
sterile conditions. The epididymal tails, which serve as a storage 
source for sperm, were isolated and placed in a container filled with 
5 mL of hydroxyethyl piperazine ethane sulfonicacid (HEPES) buffer 
and 3 mL of bovine serum albumin. To facilitate the release of sperm 
from the tubes containing the epididymal tails, minor scratches were 
made using a sterile insulin needle. Subsequently, the sample con-
tainer was transferred to an incubator set at 37 °C with 5% CO2. After 
30 minutes, the resulting suspension was decanted into a microtube 
and maintained at room temperature for subsequent steps [24]. 

4. Cryopreservation and thawing process 
For the freezing procedure, the semen samples were initially sepa-

rated into six experimental groups. These comprised four groups 
treated with zinc and selenium nanoparticles, and two control 
groups (one vitrified and one fresh). The microdroplet method was 
employed for the freezing process. 

In the experimental groups, the sperm suspension was combined 
with a freezing solution. This solution contained 5% human serum 
albumin (has; Sigma-Aldrich) and 0.5 mol/L saccharose. This mixture 
was then diluted with human tubal fluid (HTF; Sigma-Aldrich). 

Selenium and zinc nanoparticles were added to the freezing ex-
tender of the experimental groups at concentrations of 1, 2, 5 µg/mL 
and 0.1, 1, 10 µg/mL, respectively. Subsequently, 30 µL/drop of each 
prepared sample was dispensed onto a metal grid submerged in liq-
uid nitrogen. These samples were then stored in a liquid nitrogen 
tank for a duration of 2 weeks [25]. Thawing of the samples was 
achieved by immersing them in 5 mL of pre-heated HTF at a tem-
perature of 37 °C, with the addition of 1% HSA. Following this, the 
samples were incubated at 37 °C in a 5% CO2 environment and cen-
trifuged for 5 minutes at 500 ×g. Lastly, for evaluation purposes, the 
resultant pellets were suspended in 50 µL of HTF [26]. 
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5. Evaluation of sperm motility 
In this study, we utilized a computer-assisted sperm analyzer (SCA; 

Microptic Co.) to assess total and progressive motility (PM), as well as 
dynamic characteristics such as straight-line velocity (VSL), curvilin-
ear velocity (VCL), average path velocity, linearity (LIN), and beat 
cross frequency (BCF). Initially, we placed the Mackler chamber slide 
on a warm stage set at a temperature of 37 °C for a duration of 30 
minutes. Subsequently, we applied 10 µL of sperm suspension onto 
the slide and covered it. Finally, we randomly evaluated 500 sperm 
from five different microscopic fields. 

6. Evaluation of plasma membrane integrity 
For this evaluation, we utilized the hypo-osmotic swelling (HOS) 

test. This test is predicated on the osmolarity of the environment in 
which the sperm is situated. The HOS test medium comprises 0.9 g 
of fructose, 0.49 g of sodium citrate, and 100 mL of distilled water. 
These components create a hypo-osmotic environment for the 
sperm by establishing an osmolarity of 100 mOsmol/kg. Following 
dissolution, the samples underwent centrifugation (1,200 ×g, 10 
minutes). Subsequently, the supernatant solution was isolated, and 
20 µL of the centrifuged suspension was introduced to 200 µL of the 
HOS test environment and incubated for 30 minutes. Afterward, 10 
µL of each sample was extracted and affixed to a slide. On each slide, 
200 sperm were selected and scrutinized across approximately three 
microscopic fields using a phase-contrast microscope. Sperm with 
coiled tails were identified as having integrated membranes, while 
sperm with uncoiled tails were classified as having non-integrated 
membranes (Figure 1) [27]. 

7. Evaluation of mitochondrial membrane potential 
To evaluate MMP, we employed the lipophilic cationic fluoro-

chrome (JC-1) method. Initially, we diluted 10 µL of the sperm sus-
pension in 30 µL of Tris buffer, followed by staining with 0.5 µL of JC-
1. Post incubation at room temperature, we examined 200 sperm 
under an epifluorescence microscope (Carl Zeiss) at ×400 magnifica-
tion across three microscopic fields, using bandpass (BP) 450 to 490 
nm restriction and longpass (LP) 515 nm emission filters. Our obser-
vations revealed an orange color in the mid-section of sperm with 
high MMP, and a green color in the mid-section of sperm with low 
MMP (Figure 2) [28]. 

8. Evaluation of malondialdehyde concentration 
The concentration of malondialdehyde (MDA) was assessed using 

the TB reaction and a spectrophotometer (UV-1200; Shimadzu). In 
this procedure, 1 mL of cold trichloroacetic acid 20% (w/v) was add-
ed to 1 mL of sperm suspension to precipitate the protein. Following 
centrifugation (950 g, 15 minutes), 1 mL of thiobarbituric acid 0.67% 

(w/v) was introduced to the supernatant and incubated for 10 min-
utes at 100 °C using the bain-marie method. After the mixture had 
cooled, the final result was determined as mol/mL at a wavelength 
of 532 nm, using a spectrophotometer [29]. 

9. Evaluation of acrosome integrity 
In this evaluation, a prepared smear, consisting of 10 µL of sperm 

suspension, was stained with 30 µL of fluorescein isothiocya-
nate-peanut agglutinin (FITC-PNA) and then refrigerated for 15 min-
utes. Following this, it was immersed twice in phosphate-buffered 
saline (PBS) and allowed to dry at room temperature. Subsequently, 
5 µL of Uniform Closing Dataset (UCD) solution, which contained 0.5 
mL of PBS, 5 mg of p-phenylenediamine, and 4.5 mL of glycerol, was 
applied to the slide and covered with a coverslip. A total of 200 
sperm were then examined under an epifluorescence microscope at 
×400 magnification, using a BP 450 to 490 nm excitation filter and LP 
emission 515 nm. Sperm observed to have green acrosomes were 
classified as having intact acrosomes, while those with colorless ac-
rosomes or only green equatorial regions were considered to have 

Figure 1. Evaluation of sperm membrane integrity using the hypo-
osmotic swelling test. Sperm with tied tails were considered to have 
integrated membranes and sperm with untied tails were considered 
to have non-integrated membranes (arrows).

10 μm
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damaged acrosomes (Figure 3) [30]. 

10. Statistical analysis 
The statistical analysis was conducted using SPSS version 20 (IBM 

Corp.). The tests used in this study were as follows: the Kolmogor-
ov-Smirnov test, one-way analysis of variance (ANOVA), and the post 
hoc Tukey range test. The results were expressed as mean±standard 
error. The significance level was set at p≤0.05. 

11. Ethical statement 
This study was approved by the research ethics committee with 

laboratory animals of Garmsar Azad University (723-16A11).  

Results 

Table 1 compares the effects of SeONPs and ZnONPs on the motili-
ty, PM, and dynamic characteristics of rat sperm. The results indicate 
that the addition of SeONPs (at all three concentrations) to the freez-
ing extender significantly improved both total motility (TM) and PM 

compared to the vitrified group (p<0.05). In contrast, the ZnONPs 
supplement did not significantly affect TM and PM at any concentra-
tion (p>0.05). Furthermore, neither SeONPs nor ZnONPs had any im-
pact on dynamic characteristics (VCL, VSL, LIN, and BCF) (p>0.05). 

As shown in Table 2, there was a significant increase in the per-
centage of plasma membrane integrity (PMI) and acrosome mem-
brane integrity (ACi) in the groups treated with SeONPs at concentra-
tions of 1 and 2 µg/mL, as well as in the group treated with ZnONPs 
at a concentration of 1 µg/mL, compared to the vitrified group 
(p<0.05). 

At all six concentrations, the inclusion of SnONPs and ZnONPs in 
the rat sperm freezing extender did not enhance MMP (p>0.05). The 
MDA concentration was significantly higher in the groups with 1 µg/
mL ZnONPs and 1, 2, and 5 µg/mL SeONPs compared to the vitrified 
group (p<0.05).  

Discussion 

In recent years, numerous comprehensive studies have been un-

Figure 2. Evaluation of sperm mitochondrial membrane potential 
(MMP) using the lipophilic cationic fluorochrome (JC-1) method.  
Microscopic images show spermatozoa with orange and green 
middle parts, corresponding to high and low MMP, respectively 
(arrows).

Figure 3. Evaluation of acrosome integrity using fluorescein 
isothiocyanate-peanut agglutinin (FITC-PNA) staining. Sperm with 
green acrosomes were considered to have intact acrosomes, while 
sperm with colorless acrosomes or with only green equatorial 
regions were considered to have damaged acrosomes (arrows).

10 μm 10 μm
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dertaken to verify that the process of freezing sperm can inflict struc-
tural and functional damage on these cells. Physiological studies 
have indicated that one of the most detrimental factors in the freez-
ing process is the generation of oxidative stress, caused by reactive 
oxygen species (ROS). Sperm cells lack the capacity to fully counter-
act the damage caused by freezing due to an ineffective antioxidant 
system [30]. Therefore, recent research has concentrated on the im-
pact of incorporating various antioxidants into sperm freezing ex-
tenders to rectify this deficiency. In this study, we utilized potent an-
tioxidants, selenium and zinc nanowires, to induce an antioxidant ef-
fect. Both zinc and selenium are crucial elements in the process of 
spermatogenesis and maturation. Selenium is a key component of 
glutathione peroxidase, an enzyme that aids in preserving sperm by 
eliminating ROS and thereby safeguarding the cell membrane [31]. 
Additionally, the presence of zinc in seminal plasma assists in main-
taining the sperm membrane and nucleus [32]. 

Our results showed that the presence of SeONPs in the sperm 
freezing extender significantly enhances motility. This aspect of the 
result aligns with the findings of other researchers who assessed the 
impact of adding selenium in concentrations of 1, 2, 5 µg/mL and 1 
mM on sperm motility [9,24,33]. These results are likely attributable 
to the role of Se in the oxidative phosphorylation activity of mito-
chondria, and since sperm motility is associated with mitochondria, 

this parameter improved [34]. However, while it was anticipated that 
Zn would enhance sperm motility, given its crucial role in regulating 
phosphorylation and influencing motility through adenosine tri-
phosphate production, this was not observed. The reason for this 
could potentially be attributed to an inadequate concentration. The 
addition of ZnONPs to the freezing environment did not impact the 
dynamic characteristics of sperm. These findings align with the re-
ports of some researchers [35,36], but contradict the results of others 
[37]. This discrepancy could be related to the different types and 
concentrations used. 

The cell membrane, by preserving the structure within the cell, 
plays a vital role in defending against osmotic changes and ionic im-
balance caused by freezing. If the cell structure is damaged, sperm 
homeostasis is disrupted and the cell fails to function properly. PMI 
showed significant improvements in the 1 and 2 µg/mL SeONPs and 
1 µg/mL ZnONPs groups, compared to the vitrified group. A study 
conducted by Safa et al. [38] and Shahin et al. [16] on the effect of 
adding 1 µg/mL and 1% selenium, respectively, on sperm parame-
ters, demonstrated that this concentration increased viability and 
PMI in the experimental group. These results also align with the find-
ings of Farhadi et al. [35] and Arruda et al. [39], who stated that the 
addition of concentrations of 0.1, 1, 10 µg/mL and 10, 50, 100, 200 
µg/mL of ZnONPs to the sperm freezing extender did not significant-

Table 1. The effects of adding ZnONPs and SeONPs to the sperm freezing extender on motility parameters 

Groups Fresh Vitrified
ZnONPs (µg/mL) SeONPs (µg/mL)

0.1 1 10 1 2 5
Motility (%) 65.22 ± 3.23 38.34 ± 1.11a) 44.16 ± 3.15 46.01 ± 1.55 40.08 ± 3.52 48.62 ± 3.71b) 51.00 ± 3.09b) 48.12 ± 1.16b)

Progressive motility (%) 46.17 ± 4.36 25.32 ± 4.03a) 25.12 ± 4.11 31.37 ± 4.00 29.66 ± 3.09 36.86 ± 4.47b) 39.91 ± 4.30b) 35.02 ± 4.78b)

VCL (µm/sec) 73.15 ± 3.29 60.42 ± 3.01a) 58.39 ± 4.17 66.77 ± 4.09 69.35 ± 1.65 69.12 ± 3.80 65.09 ± 1.25 60.41 ± 3.38
VSL (µm/sec) 50.02 ± 4.36 24.17 ± 4.40a) 18.01 ± 5.30 27.69 ± 4.12 25.90 ± 3.05 34.81 ± 1.25 34.17 ± 3.29 30.11 ± 4.79
LIN (%) 55.64 ± 2.71 30.44 ± 2.05a) 23.65 ± 3.12 31.03 ± 2.54 37.40 ± 3.76 36.91 ± 2.70 39.55 ± 3.09 31.16 ± 2.86
BCF (%) 17.66 ± 1.22 13.80 ± 0.55a) 13.41 ± 0.69 14.59 ± 0.06 13.04 ± 0.40 15.31 ± 1.03 18.52 ± 0.24 15.49 ± 0.5

Values are presented as mean±standard error.
ZnONP, zinc oxide nanoparticle; SeONP, selenium oxide nanoparticle; VCL, curvilinear velocity; VSL, straight-line velocity; LIN, linearity; BCF, beat cross fre-
quency.
a)p<0.05, significant difference vs. the fresh group; b)p<0.05 significant difference vs. the vitrified group.

Table 2. The effects of adding ZnONPs and SeONPs to sperm freezing extender on PMI, MMP, ACi, MDA 

Groups Fresh Vitrified
ZnONPs (µg/mL) SeONPs (µg/mL)

0.1 1 10 1 2 5
PMI 73.27 ± 1.03 61.53 ± 0.90a) 67.50 ± 0.93 65.33 ± 1.11b) 62.77 ± 0.52 67.92 ± 1.16b) 70.04 ± 0.65b) 65.44 ± 1.02
MMP 80.36 ± 3.11 72.04 ± 3.55a) 72.45 ± 1.16 76.44 ± 1.68 67.89 ± 4.29 77.71 ± 1.02 79.16 ± 3.03 76.05 ± 1.71
ACi 85.03 ± 0.46 73.66 ± 1.03a) 74.50 ± 0.80 78.92 ± 0.74b) 73.99 ± 1.07 77.52 ± 1.17b) 81.25 ± 0.95b) 74.01 ± 1.15
MDA 1.17 ± 0.16 2.52 ± 0.10a) 2.50 ± 0.15 2.20 ± 0.87 2.50 ± 1.10 1.61 ± 0.17b) 1.20 ± 1.03b) 1.90 ± 0.56b)

Values are presented as mean±standard error.
ZnONP, zinc oxide nanoparticle; SeONP, selenium oxide nanoparticle; PMI, plasma membrane integrity; MMP, mitochondrial membrane potential; ACi, acro-
some integrity; MDA, malondialdehyde.
a)p<0.05 significant differences versus the fresh group; b)p<0.05 significant differences versus the vitrified group.
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ly improve PMI, compared to the control group. The differing results 
of the two elements (selenium and zinc) can be explained by the fact 
that selenium functions powerfully as an antioxidant to reduce lipid 
peroxidation and maintain osmotic or even pH balance. 

Another parameter evaluated in this study was ACi. The groups 
containing 1 and 2 µg/mL SnONPs and 1 µg/mL ZnONPs exhibited a 
higher percentage of intact acrosomes. These results are consistent 
with the findings of Farhadi et al. [35] and Nateq et al. [22], but con-
trast with the results of Arruda et al. [39]. Our study indicated that 
the optimal concentration required to improve this parameter was 1 
µg/mL zinc and 1.2 µg/mL selenium, and that increasing the concen-
tration reduced the percentage of intact acrosome. At high doses, 
this result is likely related to the peroxidation effects of antioxidants 
and the associated toxic effects [40]. The MMP did not exhibit a sig-
nificant effect at any of the used concentrations of selenium and 
zinc. The sperm membrane contains a high concentration of unsatu-
rated fatty acids, so protecting sperm against peroxidation damage 
necessitates an effective antioxidant system. MDA is regarded as an 
indicator of lipid peroxidation under stressful conditions [41]. 

The findings of this study indicate that SeONPs led to a reduction 
in MDA levels across all concentrations. This decrease in MDA levels, 
which is linked to a reduction in lipid peroxidation, can enhance 
sperm parameters, including motility, under oxidative stress condi-
tions. This could potentially explain the observed improvement in 
total mobility among groups receiving SeONPs at optimal concen-
trations. This outcome aligns with the findings of other researchers 
[21]. However, in studies involving ZnONPs, no significant decrease 
in MDA levels was observed. Our results corroborate that high MDA 
levels in semen are associated with poor sperm motility. It was noted 
that the concentrations of ZnONPs used did not possess the capacity 
to reduce MDA levels and, consequently, lipid peroxidation, ultimate-
ly failing to enhance sperm mobility. 

In conclusion, the results of this study indicate that selenium 
nanoparticles, at concentrations of 1 and 2 µg/mL, significantly en-
hance sperm parameters, suggesting an optimal concentration. In 
contrast, zinc nanoparticles appear to have negligible impact on 
these parameters. Selenium nanoparticles are shown to boost sperm 
motility by markedly reducing MDA levels. The beneficial outcomes 
of SeONPs may be due to their superior access to the antioxidant 
system and their capacity to neutralize more free radicals. Owing to 
their structural characteristics, these particles have an expanded ca-
pacity to eliminate ROS. It is advisable to carry out further research 
on various species and across a broader range of concentrations to 
confirm the influence of nanoparticles on sperm parameters during 
the freezing process. 
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