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Abstract

Pressure injury (PI), or local damage to soft tissues and skin caused by

prolonged pressure, remains controversial in the medical world. Patients in

intensive care units (ICUs) were frequently reported to suffer PIs, with a heavy

burden on their life and expenditures. Machine learning (ML) is a

Section of artificial intelligence (AI) that has emerged in nursing practice

and is increasingly used for diagnosis, complications, prognosis, and recur-

rence prediction. This study aims to investigate hospital-acquired PI (HAPI)

risk predictions in ICU based on a ML algorithm by R programming

language analysis. The former evidence was gathered through PRISMA

guidelines. The logical analysis was applied via an R programming

language. ML algorithms based on usage rate included logistic regression

(LR), Random Forest (RF), Distributed tree (DT), Artificial neural networks

(ANN), SVM (Support Vector Machine), Batch normalisation (BN), GB

(Gradient Boosting), expectation–maximisation (EM), Adaptive Boosting

(AdaBoost), and Extreme Gradient Boosting (XGBoost). Six cases were

related to risk predictions of HAPI in the ICU based on an ML algorithm

from seven obtained studies, and one study was associated with the Detec-

tion of PI risk. Also, the most estimated risksSerum Albumin, Lack of

Activity, mechanical ventilation (MV), partial pressure of oxygen (PaO2),

Surgery, Cardiovascular adequacy, ICU stay, Vasopressor, Consciousness,

Skin integrity, Recovery Unit, insulin and oral antidiabetic (INS&OAD),

Complete blood count (CBC), acute physiology and chronic health evalua-

tion (APACHE) II score, Spontaneous bacterial peritonitis (SBP), Steroid,

Demineralized Bone Matrix (DBM), Braden score, Faecal incontinence,

Serum Creatinine (SCr) and age. In sum, HAPI prediction and PI risk

detection are two significant areas for using ML in PI analysis. Also, the

current data showed that the ML algorithm, including LR and RF, could be
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regarded as the practical platform for developing AI tools for diagnosing,

prognosis, and treating PI in hospital units, especially ICU.
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Key Messages
• ML algorithms based on usage rate included logistic regression (LR), Ran-

dom Forest (RF), Distributed tree (DT), Artificial neural networks (ANN),
SVM (Support Vector Machine), Batch normalisation (BN), GB (Gradient
Boosting), expectation–maximisation (EM), Adaptive Boosting(AdaBoost),
and Extreme Gradient Boosting (XGBoost).

• Six cases were related to risk predictions of HAPI in the ICU based on an
ML algorithm from seven obtained studies, and one study was associated
with the Detection of PI risk.

• Also, the most estimated risks of Serum Albumin, Lack of Activity, mechan-
ical ventilation (MV), partial pressure of oxygen (PaO2), Surgery, Cardiovas-
cular adequacy, ICU stay, Vasopressor, Consciousness, Skin integrity,
Recovery Unit, insulin and oral antidiabetic (INS&OAD), Complete blood
count (CBC), acute physiology and chronic health evaluation (APACHE) II
score, Spontaneous bacterial peritonitis (SBP), Steroid, Demineralized Bone
Matrix (DBM), Braden score, Faecal incontinence, Serum Creatinine (SCr)
and age.

• In sum, HAPI prediction and PI risk detection are two significant areas for
using ML in PI analysis.

• Also, the current data showed that the ML algorithm, including LR and RF,
could be regarded as the practical platform for developing AI tools for diag-
nosing, prognosis, and treating PI in hospital units, especially ICU.

1 | INTRODUCTION

Pressure injury (PI), or local damage to soft tissues and
skin caused by prolonged pressure, remains controversial
in the medical world.1 Patients in intensive care units
(ICUs) were frequently reported to suffer PIs, with a
heavy burden on their life and expenditures.2 The
burdensome consequences of PI, particularly those
encountered in ICUs, make it imperative to identify the
most relevant risk factors and implement etiological
prevention.3 PI prevention relies primarily on nurse
observation and assessment. Moreover, evidence has
shown that some risk assessment tools for PI, such as the
Braden, Norton, and Waterlow scales, are not sufficiently
accurate and reliable yet.4

Hospital-acquired PI (HAPI) is a localised skin and/or
lower tissue injury during hospitalisation caused by concen-
trated pressure on a specific body area.5 Additionally, the
incidence of HAPI might be correlated with various factors
such as elderly, immobility, perfusion, nutritional status,
haematological measures, disease severity, and diabetes.6

While HAPI is generally preventable, approximately 2.5

million people in the United States suffer from HAPI in
acute care centers annually.7 Also, HAPI could lead to pro-
longed hospitalisation, chronic wound, pain, infection, and
even death.8

Machine learning (ML) is a section of AI that has
emerged in nursing practice and is increasingly used for
diagnosis, complications, prognosis, and recurrence predic-
tion.9 In contrast to conventional statistical models, ML can
actively learn complex relationships between data, overrid-
ing the limitations of non-linearity and maintaining stability
in high-dimensional datasets.10 Moreover, because medical
data surges, electronic health records (EHRs) include vari-
ous data types.11 ML offers a unique advantage in analysing
unstructured data, such as pictures and other types of
data.12 however, Many ML studies have shown that several
problems still exist related to model construction.10 Despite
the excellent performance of models on local datasets,
many researchers have failed to consider their reproducibil-
ity in other clinical environments, limiting the further pro-
motion of this powerful decision-support tool in clinical
practice.13 In a previous study,14 ML was applied to PI man-
agement, but prediction tasks were not described in detail.
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2 | RESEARCH QUESTIONS

The study aimed to answer the following research
question:

• What are the risk predictions of HAPI in the ICU
based on an ML algorithm by R programming
language analysis?

2.1 | Aim

As a result of the current issue, an analysis of the
advantages and disadvantages of the model construc-
tion process needs to be conducted to summarise ML
applications for PI prediction. Therefore, this study
aims to investigate the risk predictions of HAPI in the
ICU based on an ML algorithm by R programming lan-
guage analysis.

3 | METHODS

3.1 | Data selection

In the current study, to extract relevant studies, the
PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyzes) guideline was used.15 An
extensive search was conducted on the PubMed and ISI
databases via relevant keywords, including “intensive
care unit”, “bedsore”, “pressure injury”, and “machine
learning”, from November 1, 2022, to January 11, 2023.
The search was conducted independently by two
researchers. Boolean “AND” and “OR “operators were
used to associate keywords. The cases written on
hospital-acquired PI were included. Also, to prevent
data loss, the references of extracted articles were
searched, and 20 related articles were found. As the next
step, articles on PI incidence in non-ICUs and cases are
written before 2015 were excluded. Ultimately, seven
studies were extracted.

3.2 | R programming language plot

To create plots, the authors applied the R Programming
language. R is a programming language for statistical
computing and graphics that the R Core Team and the
R Foundation for Statistical Computing support. Devel-
oped by statisticians Ross Ihaka and Robert Gentleman,
R is used by data miners, bioinformaticians, and statisti-
cians to analyse data and create statistical software.16

3.2.1 | Sankey plot

Also, to analyse the technical uses of ML in PI manage-
ment, the “Sankey plot” was illustrated. Directed
arrows on the Sankey plot have a width proportional to
the quantity visualised: an indicator twice as broad rep-
resents double the quantity. A flow diagram may show,
for example, energy flow, materials flow, water flow, or
costs flow. At least two nodes (processes) are always
drawn in a Sankey chart to illustrate directed flow. As
a result, the Sankey plot provides information about
values, system structure, and distribution. Therefore,
they are a great alternative to standard flow charts and
bar charts.17

3.2.2 | Chord plot

A chord plot was illustrated to visualise the simultaneous
application of ML algorithms. Chord plots show interre-
lationships between data radially around a circle. Also,
the plot shows the connections between several entities
(called nodes), with arcs connecting the nodes represent-
ing relationships between the nodes. Flow importance is
proportional to the size of the arc. In biological studies,
chord plots are applied to investigate cell functions such
as gene expression.18

3.3 | Gephi

The Gephi software (V 0.10) investigated the relationship
between ML and HAPI-related risks. The Gephi software
is an open-source tool for analysing networks and graphs.
The Gephi uses a 3D render engine to display large net-
works in real-time and speed up the exploration. A flexi-
ble and multi-task architecture makes working with
complex data sets and producing valuable visual results
possible.19

4 | RESULTS

4.1 | ML algorithm

ML algorithms based on usage rate included logistic
regression (LR), Random Forest (RF), Distributed tree
(DT), Artificial neural networks (ANN), SVM (Support
Vector Machine), Batch normalisation (BN), GB
(Gradient Boosting), expectation–maximisation (EM),
Adaptive Boosting(AdaBoost), and Extreme Gradient
Boosting (XGBoost) (Figures 1 and 2).
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4.2 | Risk predictions of HAPI in the
ICU based on an ML algorithm

Six cases were related to risk predictions of HAPI in the
ICU based on an ML algorithm from seven obtained
studies, and one study was associated with the Detection
of PI risk. Also, the most estimated risks include Serum
Albumin, Lack of Activity, mechanical ventilation
(MV), partial pressure of oxygen (PaO2), Surgery,

Cardiovascular adequacy, ICU stay, Vasopressor, Con-
sciousness, Skin integrity, Recovery Unit, insulin and
oral antidiabetic (INS&OAD), Complete blood count
(CBC), acute physiology and chronic health evaluation
(APACHE) II score, Spontaneous bacterial peritonitis
(SBP), Steroid, Demineralized Bone Matrix (DBM), Bra-
den score, Faecal incontinence, Serum Creatinine (SCr)
and age (Figures 1 and 2).

4.3 | The simultaneous application of
ML algorithms

According to the obtained data, The most simultaneous
application of ML algorithms, including LR &RF,
ANN &RF, ANN& LR, LR&DT, LR&SVM, and LR& BN
(see Figure 3).

5 | DISCUSSION

The development of AI and computer technology has
gradually spread ML across various disciplines. Addition-
ally, in many studies, ML was used as a diagnostic tool.
However, The application of ML across multiple nursing
topics was less conducted and investigated. In the current
study, by “R” analysis of the seven papers' results, we
identified the most applied ML algorithm and the most
critical risk factor for PI incidence, allowing us to develop
high-quality predictive targets for future research.

FIGURE 2 The relationship between ML and HAPI-related

risks.

FIGURE 1 The “Sanky plot” of
ML application in ICU-related PI.
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In the present study, obtained data showed that LR,
RF, DT, and ANN are the most applied ML algorithm
in ICU-acquired PI studies. Based on some dependent
variables, LR is an ML classification algorithm that
predicts certain classes. Essentially, the LR model sums
the input features and calculates the logistic of the
result.20 In medical research, LR is applied for analys-
ing binary and ordinal data.21 Also, former studies
have shown that LR can estimate the relative risks of
rare events and evaluate the relative risk in cross-
sectional and longitudinal studies, where the relative
risk is not close to the odds ratio.22 Additionally,
Dweekat et al. indicated that LR is the most used
approach in the analysis of HAPI.23 Furthermore, in
ensemble learning, RFs or random decision forests
perform classification, regression, and other tasks by con-
structing many decision trees during training. Additionally,
RF is used to perform classification tasks, where the output
is the class selected by most trees. Moreover, RF corrects
decision trees' habit of overfitting their training sets. When
used for regression, they return the mean or average pre-
diction of the individual trees. RF performs better than
decision trees but is less accurate than gradient-boosted
trees. However, data characteristics may influence their

performance.24 Based on former studies, RF algorithms
are more precise than others in predicting comorbidities
such as diabetes.25,26 DT is an algorithm that searches
values efficiently in a distributed manner. By working
along multiple branches in parallel, DT can minimise the
time spent searching for value in a tree-like data structure
by combining the results of each component into one
standard solution.27 DT was also applied in investigating
genomic, proteomics, and morality risk analysis.28,29 As a
result of their universal approximation capabilities and
flexibility structure, ANNs are increasingly used to model
and identify complex non-linear systems.30 The architec-
ture and function of the ANN are based on the structure
and function of biological neural networks. ANN is also
composed of neurons arranged in layers, like neurons in
the brain.31 Shining evidence has showed the advantage of
ANN application in nursing care as a result of its superior
ability to capture non-linear relationships.32,33 More-
over, many documents indicate the application of ANN
in nursing job analysis.34

According to chord plot data, the algorithms,
including LR, RF, ANN, DT, SVM, and BN, are majorly
applied together and, therefore, might be regarded as a
proper algorithmic platform for developing AI-based

FIGURE 3 The “Chord plot” of
ML applicated algorithms in ICU-

related PI.
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tools for assessing PI risk and treatment. Additionally,
medico-mathematic data showed that The complemen-
tary application of LR and FR algorithms has an appre-
ciable predicting accuracy of (over 80%), making the
method effective.35 Also, based on former studies, ANN
and RF algorithms could be an acceptable method for
predicting healthcare disorders such as diabetes and
fatty liver, indicating that the simultaneous application
of the two algorithms can have sufficient accuracy.36,37

In the current study, the blood concentration of albu-
min is regarded as the most critical related factor for PI
incidence. In ICU patients, hypoalbuminemia is defined
as serum albumin levels below 3.3 g/dL.38 Albumin is the
most vital serum protein, and hepatosynthesis is the most
important source of its production. The oncotic pressure
is the essential function of albumin in the human body.38

As a result of hypoalbuminemia, water from the blood
moves into tissues, resulting in edema symptoms.39

Edema is a major cause of pressure injuries as a result of
the weakening of skin tissues that worsens with pressure
or when the skin becomes ischemic or hypoxic, allowing
the skin to damage easily.40 Approximately 70% of ICU
patients with hypoalbuminemia suffered pressure inju-
ries.40,41 PI prevention has long relied on repositioning
and body activity. Laboratory studies have shown that
the 90� lateral position decreases blood flow and transcu-
taneous oxygen tension close to anoxic (shallow oxygen
levels) and increases interface pressure. Alternatively,
this appears not to be the case when the patient is placed
in a 30� lateral tilt position. In addition to preventing
pneumonia, joint contractures, and urinary tract infec-
tions, body activity is crucial in preventing other compli-
cations associated with prolonged immobility.29 In the
present study, our data showed that ML could also mea-
sure the risk of PI by estimating physical activities. Inter-
stingly, with the global spread of Covid-19, Studies have
shown a significant prevalence of PI among Covid-19
patients receiving mechanical ventilation, which has led
to an increase in mortality.42 Accordingly, the present
data indicated that lower PaO2 might be the second criti-
cal risk factor of PI incidence. Based on the evidence,
lower PaO2 is directly associated with PI incidence
through decreased PH.43 Indeed, hypoxia and necrosis
caused by insufficient oxygenation can considerably
increase the risk of PI development.44 Also, KARAYURT
et al. have shown that the lower PaO2 in ICU signifi-
cantly relates to PI occurrence.45

6 | LIMITATIONS

The present study is the first technical study on
the application of ML in machine learning in the

PI incidence of ICUs care unit. Accordingly, the exis-
tence of limitations in the study is unavoidable. First,
only English-language published documents since 2015
were considered, which may have resulted in publica-
tion bias. Second, The review results may have been
somewhat biased as a result of the overall poor quality
assessment of the studies. Finally, the current study
emphasises the technical application of ML in PI analy-
sis, but valuable information could also exist in other
fields, such as clinical.

6.1 | Recommendations for future
research

According to the gathered data, the application of ML in
PI management has promising opportunities. However,
further development of the technology is still Required to
qualify ML as a reliable assistant for managing PIs. In
addition, the following suggestions can be considered
research objectives for future studies;

• Development of an AI-based platform for approaches
such as diagnosis, treatment, and wound care training.

• Identifying the most proper complementary algorithms
to develop the ML-Based concept for ICU-related PI
management.

• Development of visual-based tools for ICU-related PI
management.

6.2 | Implications for clinical practice

Early diagnosis: ML algorithms can analyse large amounts
of patient data to identify early signs of bedsores. Clini-
cians can intervene earlier and prevent bedsores from poor
prognosis.

• Personalised treatment plans: ML can help clinicians
develop personalised treatment plans based on a
patient's unique medical history, physical condition,
and other factors. This can improve the effectiveness of
treatment and reduce the risk of complications.

• Resource allocation: By identifying patients at higher
risk for bed sores, ML can help healthcare providers
allocate resources more effectively, reducing the cost of
care overall.

• Decision support: By analysing patient data, ML can
provide clinicians with treatment recommendations
that can improve patient outcomes.

• Quality improvement: To improve patient outcomes,
data from patient records can be analysed using ML to
identify trends and patterns in bedsores.
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7 | CONCLUSION

In sum, the application of ML for PI analysis has gradu-
ally become a research target of interest in recent years.
HAPI prediction and PI risk detection are two significant
areas for using ML in PI analysis. Also, the current data
showed that the ML algorithm, including LR and RF,
could be regarded as the practical platform for developing
AI tools for diagnosing, prognosis, and treating PI in hos-
pital units, especially ICU. Nevertheless, data manage-
ment, pre-processing, and model validation still required
to be improved to build practical models that can be
applied in clinical approaches.
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