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A B S T R A C T   

Annexins (ANXs) exert different functions in cell biological and pathological processes and are thus known as 
double or multi-faceted proteins. These sophisticated proteins might express on both parasite structure and 
secretion and in parasite-infected host cells. In addition to the characterization of these pivotal proteins, 
describing their mechanism of action can be also fruitful in recognizing their roles in the pathogenesis of parasitic 
infections. Accordingly, this study presents the most prominent ANXs thus far identified and their relevant 
functions in parasites and infected host cells during pathogenesis, especially in the most important intracellular 
protozoan parasitic infections including leishmaniasis, toxoplasmosis, malaria and trypanosomiasis. The data 
provided in this study demonstrate that the helminth parasites most probably express and secret ANXs to develop 
pathogenesis while the modulation of the host-ANXs could be employed as a crucial strategy by intracellular 
protozoan parasites. Moreover, such data highlight that the use of analogs of both parasite and host ANX peptides 
(which mimic or regulate ANXs physiological functions through various strategies) might suggest novel thera-
peutic insights into the treatment of parasitic infections. Furthermore, due to the prominent immunoregulatory 
activities of ANXs during most parasitic infections and the expression levels of these proteins in some parasitic 
infected tissues, such multifunctional proteins might be also potentially relevant as vaccine and diagnostic 
biomarkers. We also suggest some prospects and insights that could be useful and applicable to form the basis of 
future experimental studies.   

1. Introduction 

Annexins (ANXs) are calcium-dependent phospholipid binding and 
multi-faceted proteins containing an N-terminal part and four conserved 
domains at their C-terminal tail. The N-terminus, located on the concave 
region of the folded protein, harbors a variable sequence, and might be 
useful to detect conserved regions in different ANXs. This key region 
exerts a crucial function in the regulation of ANXs-membrane associa-
tions. The convex side of this biomolecule contains four conserved re-
peats. Each repeat is formed by approximately 70 amino acids 
containing a calcium (Ca+)-binding motif (Leow et al., 2019). 

ANXs participate in several biological processes which are very 

relevant to normal functioning but also to infectious and pathologic 
processes including adaptive immunity, inflammation, phagocytosis, 
the inhibition of phospholipase A2, cell membrane transport and traf-
ficking, the interaction with cytoskeletal proteins, signal transduction, 
calcium channel formation as well as the interaction with both coagu-
lant and fibrinolytic factors (Ayón-Núñez et al., 2018; Enrich et al., 
2011; Han et al., 2020; Kelly et al., 2022; Lizarbe et al., 2013; Vecchi 
et al., 2021). These multifunctional proteins may exert opposing or dual 
functions such as acting as anti-inflammatory and pro-inflammatory 
agents during inflammation (Mui et al., 2021; Shao et al., 2019; Yuan 
et al., 2021). Fig. 1 shows several important biological functions of the 
most prominent ANXs. 
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The expression of ANXs in different diseases including sepsis, 
myocardial infarction, and ischemia reperfusion injury has been also 
reported. For instance, ANXA1 and ANXA5 promote organ function and 
reduce mortality rate in sepsis infections, inhibit inflammatory re-
sponses, decrease inflammatory mediator secretion, and induce pro-
tection against ischemic injury. Furthermore, the effects of ANXA5 on 
both inflammation and platelet activation could be beneficial in severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections 
(Mui et al., 2021; You et al., 2021). 

Most ANXs regulate different cell processes and responses such as 
immune responses through the interaction of their motif sites with the 
downstream signaling. For instance, ANXA1 and ANXA2 have an 
important role in regulating immune functions and inflammation and 
specifically, ANXA2 in fibrinolysis and fibrosis in addition to the specific 
role of ANXA1 in response to DNA damage (Araújo et al., 2021; Crois-
sant et al., 2021; Dallacasagrande and Hajjar, 2020; Han et al., 2020; 
Lim and Hajjar, 2021; Sousa et al., 2022). ANXA5 is essential for 
downstream signals leading to T-cell activation as recently demon-
strated thus adding knowledge to the role of ANXA1, ANXA2, and 
ANXA6 in the immunological process (Hu et al., 2020). Therefore, tar-
geting or inhibiting these proteins could offer a number of important 
outcomes during disorders and infections including parasitic diseases 
such as controlling infection-induced acute inflammation or promoting 
host defense (de Araújo et al., 2022; Vago et al., 2021). In addition, the 
recognition of ANXs-down-stream signaling might be insightful for the 
in-depth understanding of the complicated mechanisms of such proteins 
in infections and disorders. Table 1 shows the important correlation of 
some ANXs with different host-cell signaling and the management of 
host responses. 

2. Parasite ANXs 

Different studies that have employed a variety of techniques 
including genomics, proteomics and in silico tools for the identification 
of ANXs during infections, including parasitic infections (Aziz et al., 
2011; Cantacessi et al., 2013; Cava et al., 2020; Cui et al., 2021; Debarba 

et al., 2020; Einarsson et al., 2016). In helminth parasites, ANX (Sm)3 
(Smp_077720) has been introduced in Schistosoma mansoni as a 
biomolecule that holds the plasma membrane and membranocalyx of 
the parasite together by a calcium-dependent phospholipid binding 
property (Leow et al., 2019). 

Plasminogen (Plg)-binding proteins including ANXs can be recruited 
by different infectious agents to invade and establish themselves in their 
infected hosts. During parasite infections (such as protozoan, helminth, 
and probably taeniid parasites), Plg/plasmin (Plm) might be involved in 
invasion and migration of the parasites across the infected tissues of the 
host (Ayón-Núñez et al., 2018; Lin et al., 2012). Evidence has shown that 
S. bovis tegument ANX (ACC78610) has anticoagulant and fibrinolytic 
features (de la Torre-Escudero et al., 2012). Thus, further research into 
key molecular interactions involving ANXs will allow the identification 
of novel mechanisms of invasion, migration and specific parasitic stage 
activation that could be consequently targeted to control parasitic in-
fections. Table 2 describes the most commonly modulated ANXs during 
helminth infections. 

On the other hand, the ANXs of some protozoan parasites including 
Giardia duodenalis (α-giardins form a large class of ANX-like proteins (E- 
ANXs)). These are located at the outer edges of the ventral disk micro- 
ribbons and have been found to be correlated with the stabilization of 
the parasite membrane in the host intestine through microtubule 
interaction (Steele-Ogus et al., 2022; Weeratunga et al., 2012; Weiland 
et al., 2005). Moreover, ANXA3, ANXA5 have been described as secre-
tory proteins in interaction with human intestinal epithelial cells during 
G. duodenalis infection, leading to the modulation of host cell responses 
during pathogenesis, especially inflammatory responses (Ma’ayeh et al., 
2017). Parasite α-giardins (E-ANXs) and parasite ANXs 1–14 (related to 
α-giardins, E-ANXs) have also been characterized in G. muris and Spi-
ronucleus salmonicida, respectively, located in the parasite structure 
(parasite cytoskeleton and membrane) and involved in parasite struc-
tural functions (Einarsson et al., 2016). 

Due to the critical role of ANXs (both parasite and host) mainly in 
host-parasite interactions and immunoregulation, these proteins have 
been suggested as potential candidates for the development of new 

Fig. 1. Several important biological functions of the most prominent ANXs. Formyl peptide receptor 1 (FPR1), nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase 1 (NOX1), reactive oxygen species (ROS), the serine/threonine kinase AKT (Protein kinase B). 
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drugs, vaccines and diagnostic tools in complex helminth infections 
(Hofmann et al., 2010). The parasite ANXs that have been described as 
novel potential biomolecules for drug and vaccine development include 
ANXB1, ANXB2, and ANXB3 isolated from Taenia solium cysticercoses 
and an ANX homolog, TpANXB1 (showing great similarity with T. solium 
ANXB1 (TsANXB1)) from the transcriptome of adult T. pisiformis (Hof-
mann et al., 2010; Yang et al., 2014). Recombinant ANXB30 has not 
provided significant protection against S. mansoni, thus, it may not be an 
appropriate vaccine candidate but it could be a suitable biomarker for 
immunodiagnostics tools (Leow et al., 2020). Furthermore, the disrup-
tion of the apical membrane complex of the schistosome tegument, as a 
pivotal protective barrier for the parasite, via the inhibition of ANXs 
function has been also suggested as a plausible therapeutic target for the 
control of this parasitic infection (Leow et al., 2019). 

In contrast to helminth infections, there is no adequate information 
regarding the employment of ANXs as plausible drugs, vaccines and 
diagnostic candidates in protozoan parasitic infections. To better study 
ANXs as effective therapeutic, vaccine and diagnostic targets, we need to 
fully characterize the molecular biology and the relevant mechanisms of 
these proteins during parasitic infections and pathogenesis. Accord-
ingly, this study aims to review the most important parasite and host 
modulated ANXs during intracellular protozoan parasitic infections 
including leishmaniasis, toxoplasmosis, malaria and trypanosomiasis. 

2.1. Leishmaniasis 

Leishmaniasis is a group of vector-borne infectious diseases caused 
by intracellular protozoan parasites belonging to the genus Leishmania. 
These infectious diseases are transmitted to humans by the bite of 
phlebotomine sand flies. After the entrance of parasites into human skin, 
different immune cells such as macrophages try to engulf the parasites. 
However, the parasites can deploy different strategies such as generating 
parasitophorous vacuoles (PVs) within the macrophage to better adapt 
to the host cell conditions and remain alive. The most common form of 

these diseases is cutaneous leishmaniasis (CL), which produces skin 
sores, whereas the most lethal form is visceral leishmaniasis (VL), which 
infects several internal organs (Gow et al., 2022; Torres-Guerrero et al., 
2017). 

In Leishmania parasites, a species-specific PV is essential for the dif-
ferentiation of infective promastigotes into amastigotes (Real et al., 
2010). However, the survival and differentiation of some co-infecting 
parasites including T. cruzi occurs in Leishmania-containing vacuoles. 
Thus, the creation of chimeric PVs may be related to the enhancement of 
the pathogenicity of protozoan parasites (Pessoa et al., 2016). There is 
evidence for the expression of ANXA1 in PVs containing Leishmania 
parasites and its crucial role in vesicle fusion with endosomes (Collins 
et al., 1997). Therefore, ANXA1 could be considered as a therapeutic 
target for the treatment of protozoan intracellular infections. 

The high expression of ANXA1 has been reported in apoptotic cells 
and macrophages in exudative necrotic and exudative necrotic- 
granulomatous reactions in patients with CL, highlighting the function 
of this protein in phagocytosis and apoptosis (Pona et al., 2021). Addi-
tionally, it has been shown that ANXA1 is differentially expressed in 
CD163+ macrophages and T cells in necrotic lesions in comparison with 
granulomatous or cellular lesions of Leishmania-infected skin (Silva 
et al., 2015). On the other hand, Leishmania infection can induce 
alteration in the proteome profile of Extracellular Vesicles (EVs) in 
infected cells such as macrophages. EVs released from Leishmania 
infected cells can affect and promote vascularization in leishmaniasis 
(Gioseffi et al., 2020). Some results have indicated that several ANXs 
-which are biomarkers of EVs- such as A1, A2, A3 and A5 are secreted in 
EVs from Leishmania-infected cells. Amongst these, ANXA3, as the most 
prominent enriched protein, plays an important role in the promotion of 
angiogenesis (Park et al., 2005). Therefore, the recognition of different 
ANXs expressed in CL and in the proteome of EVs can be employed to 
gain a more detailed understanding of certain clinical features of this 
disorder. 

ANXA1 induction (up- and down-regulation) in association with 

Table 1 
The interaction of host-ANXs with cell signaling to manage cell responses/conditions or pathogenesis during infections/disorders.  

Host- 
Annexins 
(ANXs) 

Infections/disorders Relevant cell signaling Effect References 

ANXA1 Cancer Induction of MAPK/ERK signaling via FPRs Decrease of neutrophil activity to restrict 
inflammatory responses 

(Shao et al., 2019) 

Activation of ERK/ITGB1BP1 signaling through FPRs and 
induction of EMT via the NF-κB and TGF-β signaling 
pathways 

Induction of tumorigenesis (Cheng et al., 2012) 

ANXA2 Trypanosoma cruzi T. cruzi G strain mucins interact with target cell ANXA2 and 
activate FAK signaling 

Facilitating parasite entry (Onofre et al., 2022) 

Infection-initiated 
inflammation 

Binding to endosomes and negatively regulating TLR4- 
triggered inflammatory responses via the TRAM-TRIF 
pathway 

Activation of macrophages and 
triggering the secretion of anti- 
inflammatory cytokines 

(Zhang et al., 2015) 

Anaplasma 
phagocytophilum 

Loop 2 of sialostatin L2 (an anti-inflammatory protein) bind 
to ANXA2 and inhibits the formation of the NLRC-4 
inflammasome signaling during infection 

Inflammasome evasion by pathogens (Wang et al., 2016) 

Angiostrongylus 
cantonensis 

Parasite Galectin-1 interaction with ANXA2 through 
activation of the JNK pathway 

Impairment of macrophage viability (Shi et al., 2020) 

Inflammation Tissue plasminogen activators induce the NF-κB pathway in 
macrophages through a signaling pathway involving 
ANXA2/CD11b-mediated integrin linked kinase 

Initiation and progression of 
inflammation 

(Lin et al., 2012) 

ANXA5 Leishmania Interaction between parasite and host ANXA5 and activation 
of TGF-β signaling 

Silencing of phagocytes and parasite 
survival 

(Aga et al., 2002; van 
Zandbergen et al., 2004;  
Walker et al., 2014) 

Cardiac 
inflammation 

Blocking of TLR-4 signaling dendritic cells and 
cardiomyocytes 

Decrease of LPS and inducing the 
secretion of pro-inflammatory cytokines 
(IL-1β, IL-6 and TNF-α) 

(Arnold et al., 2014; Park 
et al., 2016; Rand et al., 
2012) 

Epithelial-mesenchymal transition (EMT), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinases (ERK), formyl peptide receptor family 
(FPRs), integrin beta-1-binding protein 1 (ITGB1BP1), cytosolic NOD-like receptor (NLR) protein 4 (NLRC4), c-Jun N-terminal kinases (JNKs), endothelial growth 
factor receptor-2 (VEGFR-2), toll-like receptor-4 (TLR4), focal adhesion kinase (FAK), Toll/interleukin-1 (IL-1) receptor (TIR) domain-containing adaptor-inducing 
IFN-β (TRIF), TRIF-related adaptor molecule (TRAM), transforming growth factor beta (TGF-β), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), 
tumor necrosis factor alpha (TNF-α). 
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lesion size and parasite burden and also its potential role in the modu-
lation or control of inflammatory responses have been deciphered dur-
ing Leishmania braziliensis infection in vivo and in vitro (Oliveira et al., 
2017). In the absence of ANXA1 expression down-stream 

proinflammatory signals, apoptotic mechanisms, edema and inflam-
matory response (increased interferon gamma levels and inducible nitric 
oxide synthase (iNOS) production) are induced and activated for the 
efficient control of Leishmania parasite replication. Although the absence 

Table 2 
The expression of ANXs during helminth parasitic infections.  

Echinococcus granulosus 
Annexins (ANXs) Location Property/Function References 

Host-derived ANXA2 Originated from the host granulomatous 
inflammatory cells 

Involvement in the calcification process, associated with an intense 
local response to the hydatid cyst 

(Dıáz et al., 2000) 

Echinococcus granulosus 
ANXB33 (Eg-ANXB33) 

In parasite secretions, cyst fluid, 
inflammatory cells and fibroblasts of the 
host-derived layer 

Parasite survival, host-parasite interface (Aziz et al., 2011; Song et al., 
2016; Virginio et al., 2012;  
Yang et al., 2021) 

E. granulosus ANXB3 
(EgANXB3) and 
EgANXB38 

In all stages of parasite and secretions, in 
liver tissues both near the cysts or distant 
from the cysts 

In adult parasite growth and development of protoscoleces and 
protoscolece invasion of the definitive host, regulating the host 
immune responses or functioning in parasite immune evasion 

(Song et al., 2021)  

Taenia solium 
ANXs Location Property/Function References 

Parasite (metacestodes) 
ANXB1 

In cyst fluid, sera of hosts and in the 
host-derived layer surrounding the 
cysts 

Induction of calcium-dependent eosinophil apoptosis and downregulation of 
the host immune response and enhancing parasite survival by inhibiting the 
inflammation around parasites 

(Gao et al., 2007; Yan et al., 
2008; Zhang et al., 2007) 

ANXB1 (maybe parasite or 
host ANX) 

Cyst fluid In the interaction between the cysticerci and the host (Diaz-Masmela et al., 2013) 

ANX (Smp_074150) (maybe 
parasite or host ANX) 

(Cui et al., 2021)  

Taenia multiceps 
ANXs Location Property/Function References 

Parasite ANXB2 and ANXB12 High expression level in the larvae (oncosphere) stage Parasite growth and development (Guo et al., 2018) 
ANXB3 High expression level in the adult stage (Guo et al., 2018)  

Taenia pisiformis 
ANXs Location Property/Function References 

TpANXB1 (with high similarity with T. solium ANXB1(TsANXB1)) Transcriptome of adult T. pisiformis Immunoreactive protein (with diagnostic property) (Yang et al., 2014)  

Clonorchis sinensis 
ANXs Location Property/Function References 

Parasite 
ANXB30 

Secretory 
protein 

Alteration of the host’s autoimmune response, interaction with host plasminogen and maintenance of 
hemostasis (inhibiting this interaction by lysine) 

(Ayón-Núñez et al., 2018; He 
et al., al.,2014)  

Angiostrongylus cantonensis 
ANXs Location Property/Function References 

Host 
ANXA2 

Plasma membrane of host cells 
(macrophages) 

Parasite Galectin‑1 and host ANXA2 interaction and decreasing the viability of 
macrophages (inducing apoptosis) through activation of c-Jun N-terminal kinases 
(JNKs) pathway 

(Donskow-Łysoniewska et al., 2021; 
Shi et al., 2020) 

NEX1 
ANX 

Down-regulation in adult males and 
up-regulation in adult females 

Probably in parasite survival (Huang et al., 2013)  

Schistosoma bovis 
ANXs Location Property/Function References 

S. bovis ANX 
(SbANX) 

The expression on the tegument and surface of S. bovis 
schistosomula and adult worms 

Fibrinolytic and anticoagulant properties and 
immunomodulatory function 

(de la Torre-Escudero et al., 
2012)  

Schistosoma mansoni 
ANXs Location Property/Function References 

Parasite ANXA2 In the tegument of schistosomula and adult worms 
(especially male worms) 

Association with the tegument arrangement, mediating the attachment 
of the membranocalyx to the underlying membrane and a potential 
target for immune intervention and vaccine candidate 

(Braschi et al., 2006; 
Tararam et al., 
2010) 

Parasite ANXB2 
(Smp_077720) 

In the tegument Parasite biological functions (Diaz Soria et al., 
2020) 

Parasite ANXB30, 
ANXB5a, ANXB7a and 
ANXB5b 

ANXB30 and ANXB7a with high abundance during 
schistosomulum stage, ANXB5a and ANXB5b with 
high expression in adult males 

Parasite development (playing a role in dynamic membrane-associated 
tegument maintenance through calcium ion regulation), host-parasite 
interactions (immunoreactivity property) 

(Leow et al., 2019) 

Parasite ANXB22 In the tegument Structural integrity in the tegument, immune evasion function (Leow et al., 2014)  

Ostertagia ostertagi 
ANXs Location Property/Function References 

Parasite ANX-like protein (Oos- 
ANXL-2.1) 

Located in the hypodermis in L3 and to the hypodermis in adult 
worms 

Without distinct function (probably immune 
modulator) 

(Sharma et al., 
2017)  

Brugia malayi 
ANXs Location Property/Function References 

ANX (UniProtKB ID: 
A0A0K0J0N3_BRUMA) 

Parasite extracellular 
vesicles 

Participating in exosome biogenesis and considering as plausible 
immunomodulators 

(Harischandra et al., 
2018)  
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of this protein can effectively control parasite multiplication, lesion size 
and inflammatory infiltrates were increased during leishmaniasis. 
Therefore, it could be concluded that ANXA1 expression could be 
crucially involved in the control of tissue inflammation during L. bra-
ziliensis infection and likely in other leishmaniases. Thus, more investi-
gation into the expression of this protein in Leishmania parasites and in 
infected-host’s cells and downstream relevant signaling pathways would 
provide valuable information about the functions of ANXs in parasite 
pathogenicity and in the modulation of immune responses. Further-
more, the identification of the expression level of such proteins in 
infected sera could be evaluated as a diagnostic marker in the prognostic 
follow-up of leishmaniasis. 

The phagocytic S100 proteins are a group of calcium-binding mol-
ecules and are pro-inflammatory factors involved in immune responses. 
S100A10 and S100A11, two relevant members of this family, are up- 
regulated in Leishmania (L. major)-infected macrophages and interact 
with ANXA1 and ANXA2 and form a complex Ca2+ sensing system 
(Guerfali et al., 2008). Due to the pro-inflammatory function of ANXA2 
and its down-regulation in Leishmania-infected macrophages, the char-
acterization of the exact mechanisms between S100 and ANX proteins 
and the cell signaling pathways of such proteins may provide novel in-
sights into inflammation, tissue damage and modulation of immune 
responses during leishmaniasis. 

2.2. Toxoplasmosis 

Toxoplasma gondii is an obligate intracellular protozoan pathogen 
belonging to the apicomplexan parasites with a worldwide distribution 
that has a prominent impact on human health. This parasite can induce 
different symptoms including encephalitis, necrotic lesions in the cen-
tral nervous system or retinochoroiditis in immunocompromised pa-
tients. In addition, congenital toxoplasmosis (from infected mother to 
child) correlates with perinatal morbidity and mortality (Buffolano, 
2008; de Barros et al., 2022); whereas ocular toxoplasmosis, another 
clinical manifestation of this disease, appears through congenital or 
acquired routes (Bosch-Driessen et al., 2002). 

ANXA1 has been suggested as a potent regulator of inflammation in 
ocular toxoplasmosis (T. gondii infection by RH strain) (Mimura et al., 
2012). Interestingly, the expression levels of this protein changed and 
increased in neutrophils (in vivo) and human retinal pigment epithelial 
(RPE) cells (ARPE-19) (in vitro) after infection. This evidence suggested a 
potential role for ANXA1 in the neutrophil activation in the ocular 
toxoplasmosis model. Moreover, the enhanced levels of ANXA1 in 
ARPE-19 cells probably activate the phagocytosis process of the para-
sites by cells, suggesting an immune protective function in the tissue 
(Mimura et al., 2012). The significant modulation of ANXA1 in in-
flammatory responses during ocular toxoplasmosis may highlight 
ANXA1 as a therapeutic target. Thus, the expression of other ANXs could 
be also investigated as interesting candidates. 

More information about the differential expression levels of ANXs in 
pregnancy during toxoplasmosis is needed. The placenta is a potential 
source of ANXs (Gęca et al., 2022; Sousa et al., 2022), constituting 
approximately 2% of all placental membrane proteins (Buhl et al., 
1991). The expression levels of ANXA1 and ANXA2 are high in 
trophoblast cells and exert an important function in early embryonic 
development (through phospholipase A2 inhibition). Proteomics data 
identified that the expression levels of ANXA1, ANXA2 and ANXA3 were 
reduced in Toxoplasma-infected placentas. The alteration in ANXA1, 
ANXA2 and ANXA3 expression during Toxoplasma infection may lead to 
aberrant extracellular matrix (ECM) remodeling and trophoblast cell 
migratory processes and consequently, serve as a mechanism to induce 
the abnormal pregnancies triggered by this disease (Jiao et al., 2017). 

The expression levels of ANXA1 and its receptor (formyl peptide 
receptors 1 (FPR1)) are decreased in Toxoplasma-infected placental ex-
plants in third trimester of gestation (compared to first trimester pla-
centas) and the tissue was more sensitive and permissive to the parasite. 

Interestingly, Ac2–26 (mimetic peptide of ANXA1) treatment enhanced 
the ANXA1 and FPR1expression levels and reduced intracellular pro-
liferation of Toxoplasma parasite in placentas infected with Toxoplasma, 
suggesting a modulatory function of ANXA1 (both anti-parasitic and 
anti-inflammatory effects) in these tissues (de Oliveira Cardoso et al., 
2018). Functions of ANXA1 and its derivative peptide (Ac2–26) are 
crucially mediated by FPRs (Oliveira et al., 2021; Zharkova et al., 2023), 
as regulators of innate inflammatory responses. The secretion of ANXA1 
is also deeply affected by FPRs (Novizio et al., 2020). Since toxoplas-
mosis decreased both ANXA1 and FPRs, and due to the immunoregu-
latory roles of such biomolecules, more investigation might further 
confirm ANXs as potential therapeutic targets during congenital 
toxoplasmosis. 

T. gondii surface antigen 1 (TgSAG1), an important surface protein of 
tachyzoites, plays a critical role during Toxoplasma infection through 
different strategies including the regulation of host cell immune re-
sponses to favor the parasite. TgSAG1 interact with the host proteins 
S100A6 and ANXA6 during attachment to infected cells, leading to the 
progression of pathogenesis (Zhou et al., 2021). TgSAG1 can induce the 
secretion of TNF-α via the S100A6-Vimentin/PKCq-NF-κB signaling 
pathway. Accordingly, two scenarios might be imaginable. In one, SAG1 
binds to ANXA6 and restricts the plausible function of this protein in 
regulating the host immune responses. Another hypothesis is that 
ANXA6 in association with TgSAG1 and through relevant downstream 
signaling might further facilitate and promote the entrance of parasites 
into host cells and consequently increase pathogenesis. Thus, further 
studies are required to better explore the cell biological correlation be-
tween TgSAG1 and ANXA6 during Toxoplasma invasion. 

It is well known that the Toxoplasma parasite recruits different host 
cell proteins to survive and continue its pathogenesis during infection 
(Portes et al., 2020; Zhang et al., 2019). Therefore, the use of host 
ANX-proteins by Toxoplasma-parasitic proteins could be interesting to 
better understand host-parasite interactions. Additionally, there are 
different types of functional ribonucleoprotein (mRNP) granules with 
varied functions in extracellular T. gondii (Lirussi and Matrajt, 2011). 
Since ANX proteins such as ANXA11 can exert a link action between the 
mRNP granules and a lysosome or endosome, (transporting the RNP 
granules) (Broix et al., 2021; Pushpalatha and Besse, 2019; Roscoe et al., 
2021), the in-depth investigation of the aforementioned relationship 
may open up new therapeutic avenues. 

2.3. Malaria 

Malaria is an acute febrile disease caused by apicomplexan parasites 
Plasmodium spp. with a sophisticated life cycle involving two hosts, the 
Anopheles mosquito (vector) and vertebrate hosts such as humans. The 
life cycle of the parasite in humans (the asexual stage) includes intra- 
erythrocytic and exoerythrocytic (liver) stages. The sexual stage oc-
curs in the Anopheles mosquito midgut and leads to the formation of 
ookinete (Su and Wu, 2021; Venugopal et al., 2020). 

ANXs expressed in Plasmodium-infected cells exert vital functions 
during infection. For instance, ANXA4 and ANXA11 have been charac-
terized in the Maurer’s clefts of infected-red blood cells (RBCs) in Plas-
modium falciparum infection, playing important roles in RBC membrane 
remodeling, Maurer’s cleft sculpting and vesicle formation or 
P. falciparum erythrocyte membrane protein 1 (PfEMP1) trafficking 
(McHugh et al., 2020). 

ANXA7 has been identified in the EVs of P. falciparum (Abou Karam 
et al., 2022). Since Plasmodium parasites use EV subpopulations to target 
several cellular signaling pathways or host responses (Blow and Buck, 
2022), more studies are needed to better characterize the functions of 
these identified ANXs in the EVs of the parasite. 

Surprisingly, evidence has shown that P. falciparum (ring stage) 
infected-RBCs from sickle cell patients induce ANXA7 degradation and 
phosphatidylserine (PS) exposure on the cell surface and triggered 
infected-RBC clearance by macrophages. Moreover, in -ANXA7-deficient 
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mice, PS exposure on the cell surface of infected-erythrocytes acceler-
ated cell clearance (Lang et al., 2009). Thus, the absence of ANXA7 on 
infected-RBC is most probably related to the decreased pathogenesis and 
partial protection during malaria infection. Due to the key role of PS in 
cell responses such as apoptosis and ANXs-PS interaction (Lee et al., 
2013; Lizarbe et al., 2013), further experiments might suggest ANXA7 as 
a prognostic biomarker in Plasmodium infections and reveal further de-
tails concerning the molecular biology of these biomolecules in the 
pathogenesis of malaria. 

Plasmodium ookinete invasion of the Anopheles mosquito midgut is an 
essential stage of parasite pathogenesis during infection. Nevertheless, 
the molecular mechanisms of such an event have not been fully inves-
tigated especially when dealing with host-parasite protein interaction. 
ANX-like proteins, aminopeptidase 1 (APN1) and calreticulin have been 
studied as potential receptors expressed on the luminal surface of the 
Anopheles midgut for ookinete invasion (Dinglasan et al., 2007; Kotsy-
fakis et al., 2005; Martínez-Barnetche et al., 2007). Ookinete might 
employ ANXs for protection or to facilitate transition to the midgut 
(Kotsyfakis et al., 2005). Calreticulin is the only receptor whose 
attachment to a surface parasitic protein (Pvs25) has been confirmed 
(Martínez-Barnetche et al., 2007; Sharma and Jaiswal, 2013). This raises 
the possibility of designing mimotopes of ookinete surface proteins 
including ANXs for bringing innovation in the field of 
transmission-blocking vaccines against malaria (Vega-Rodríguez et al., 
2014). Moreover, inhibiting ANXs expressed in the midgut by targeting 
antibodies could be considered as another therapeutic strategy (Kotsy-
fakis et al., 2005). Therefore, protein-protein docking methods with 
proteins expressed in the mosquito gut, especially ANXs, will be very 
insightful in this sense (Sharma and Jaiswal, 2013). 

Regarding cellular immune responses during malaria, it has been 
documented that ANXA1 levels are differentially expressed in T 
lymphocyte sub-populations (CD4+ and CD8+ T cells and regulatory T 
cells (Tregs)) and probably influence cell proliferation. Additionally, 
this immunoregulatory protein most likely induces the secretion of IL-10 
in plasma of patients infected with malaria (Borges et al., 2013). Some 
studies have revealed that the secretion of this cytokine is probably 
induced via activation of the extracellular signal-regulated kinase (ERK) 
cascade (da Cunha et al., 2012; Ferlazzo et al., 2003; Parente and Solito, 
2004; Weyd et al., 2013). Consequently, IL-10 induction may drive 
regulatory proinflammatory responses contributing to parasite elimi-
nation and participating in pathogenesis (da Cunha et al., 2012; Weyd 
et al., 2013). Therefore, the joint investigations regarding the correla-
tion between ANX expression in the lymphocyte subpopulations and the 
release of immunoregulatory cytokines and relevant synergistic 
signaling may lead to a better understanding of the dynamics of immune 
responses against Plasmodium infections. 

2.4. American and African trypanosomiasis 

T. cruzi is the causative agent of Chagas disease (American 
trypanosomiasis), and is transmitted to vertebrate hosts through feces or 
urine of infected blood-sucking triatomine bugs. Blood trypomastigotes 
migrate via the bloodstream and infect different visceral organs 
including the heart, stomach, esophagus of vertebrate hosts (Caputo 
et al., 2022). The in vitro transcriptomic data have clarified that a special 
strain of T. cruzi was able to increase the expression level of ANXA1 in a 
myoblast cell line during infection (Adesse et al., 2010). However, the 
effect of this modulated protein on the infected-host cell responses 
during infection has not been highlighted. 

The role of ANXA2 has been defined in actin-based macro-pinocytic 
rocketing and has been identified as an protein interacting with F-actin 
and membranes enriched in phosphatidylinositol 4,5,-biphosphate 
(PIP2) (Hayes et al., 2009; Merrifield et al., 2001). Moreover, this pro-
tein is involved in the membrane structures enriched in F-actin during 
the attachment and entrance of some pathogens to host cells (Grieve 
et al., 2012). Overall, ANXA2 can bind to or integrate with actin 

filaments as a monomer or in combination with the S100A10 protein as 
a hetero-tetrameric complex (Hayes et al., 2004). On the other hand, 
ADP ribosylation factor 6 (ARF-6) by altering actin cytoskeleton poly-
merization plays a major role in host cell invasion by intracellular 
pathogens (Humphreys et al., 2013). Interestingly, it has been suggested 
that the invasion of host cells by T. cruzi amastigotes is a host actin 
polymerization-dependent phenomenon. The accumulation of ARF-6 on 
the PV containing T. cruzi amastigotes show that both ARF-6 and ANXA2 
were critical proteins with a convergent form of host cell invasion (and 
thus replication) by parasite amastigotes probably through recognizing 
or disorganizing the actin cytoskeleton during invasion (Teixeira et al., 
2015). The elucidation of the exact mechanisms of interaction between 
ANXs, ARF-6 and actin filaments are required particularly to suggest 
novel therapeutic approaches against American trypanosomiasis. 

Evidence showed that gp35/50 mucins mediate the host cell invasion 
of T. cruzi metacyclic trypomastigote (G strain) and clarified the robust 
function of ANXA2 as the receptor for gp35/50. Therefore, gp35/50- 
mediated parasite invasion is induced by interaction with host cell 
ANXA2 and clathrin-dependent endocytosis. Interestingly, the depletion 
of ANXA2 and clathrin inhibition decreased host cell susceptibility to 
metacyclic trypomastigote internalization of this strain, suggesting the 
plausible therapeutic property of this ANX in American trypanosomiasis 
(Onofre et al., 2022). 

Regarding ANXs and the arthropod protozoan vectors, the salivary 
gland transcriptome analysis of T. brucei-infected Glossina morsitans has 
shown that two ANXs encoding genes, ANXIX (GMOY009975) and 
ANXX (GMOY009575) were up-regulated after experimental infection. 
In line with this, vaccination trials with recombinant mosquito ANXs 
induce humoral responses that impair Plasmodium parasite development 
in the midgut, suggesting the crucial roles of ANXs during vector midgut 
invasion by the parasite (Matetovici et al., 2016). Moreover, more data 
have revealed that ANX expression increased in the posterior midgut of 
the T. cruzi-infected triatomine digestive tract compared to the anterior 
midgut and interestingly that their homeostasis in the posterior midgut 
might be correlated with the parasite burden (Gumiel et al., 2020). Thus, 
the investigation of ANX-proteome and genome of infected-vector tis-
sues by Leishmania, Trypanosoma and Plasmodium parasites can provide 
deeper insights into parasite-vector interactions during pathogenesis. 

Table 3 summarizes the important functions of host modulated ANXs 
during the most prominent intracellular protozoan parasitic infections. 
Furthermore, for a better understanding, Fig. 2 illustrates all the ANXs 
modulated in parasitic infections reviewed in this study. 

3. The relationships between ANX structure and molecular 
interactions and cell signaling events 

Some parasite and host cell ANXs have motif and binding sites in 
their structures to regulate several cell signals and responses and thus 
regulate the pathogenesis process. For instance, the Ca2+-binding sites of 
E. granulosus ANX (Eg-ANX) in repeats I and IV have Ca2+-dependent 
phospholipid-binding properties that facilitate a link between Ca2+

signaling and different membrane functions including ion flux regula-
tion, maintenance of membrane organization, exocytosis, endocytosis, 
and vesicle fusion. EGTA, as a kind of calcium chelating agent, is able to 
inhibit the Ca2+-dependent binding features of Eg-ANX. Moreover, the 
interaction of some parasite ANXs with the actin (actin-binding (IRI) 
motif in repeat IV of S. haematobium (Sh-ANX) and S. mansoni (Sm-ANX), 
but not in the Eg-ANX sequence) can be also considered as another 
property that could be employed to manage ANX functions (Song et al., 
2016). Additionally, some ANXs binding small molecules such as 
benzo-di/thi-azepine derivatives might attach to a pocket on the 
concave side of mammalian ANXs (especially ANXA3, ANXA5) and 
affect their interactions with phospholipid membranes in an allosteric 
mode. The pocket is composed on one side by the linker peptide between 
repeats II and III and is restricted by the very N-terminal part on the 
adjacent side (Hofmann et al., 2010). Thus, the characterization of such 
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motifs can be helpful to manage ANX expression in parasite structure 
and parasite-infected host cells, suggesting novel and interesting ther-
apeutic strategies. On the other hand, proteomics evidence has revealed 
a close relationship between S100 proteins and ANXs (Basika et al., 
2012). Therefore, in addition to the identification of ANX motif regions 
as a plausible therapeutic strategy, the characterization of such corre-
lated proteins might also lead to the recognition of other ambiguous 
biological aspects of ANXs, useful in treatment. 

Post-translational modifications (PTMs) are also involved in the ANX 
functions and their interactions with other proteins and probably down- 
stream cell signaling (Shao et al., 2019). In parasitology, the investiga-
tion of PTMs on modulated parasite and infected-host cell ANXs and 

their effect on the pathobiology of parasitic infections needs to be 
fostered. However, one phosphorylation site has been identified in the 
N-terminal zone of each schistosome ANX. The phosphorylated N-ter-
minal zone is variable in this parasite ANX. This motif region is 
composed of important sites for phosphorylation, proteolysis and 
interaction with other biomolecules (Leow et al., 2019). Moreover, the 
absence of a phosphorylation region in Giardia ANXs (α-giardins) 
induced major functional restrictions in such parasitic proteins (Bauer 
et al., 1999). On the other hand, intracellular protozoan parasites might 
induce new PTM sites on the host cell ANXs and by this strategy those 
pathogens alter the host cell condition allowing their survival and the 
persistence of infection. Consequently, the identification and 

Table 3 
The function of host-modulated ANXs during prominent intracellular protozoan parasitic infections.  

Annexins (ANXs) Parasitic infections Function References 

ANXA1 Leishmaniasis Regulation of tissue inflammation in CL (Oliveira et al., 2017) 
Facilitating vesicle fusion with endosomes in PV (Collins et al., 1997) 
Induction of phagocytosis and apoptosis in apoptotic cells and 
macrophages 

(Pona et al., 2021) 

Differential expression in CD163+ macrophages and T cells (affecting 
CL manifestations) 

(Silva et al., 2015) 

ANXA1, ANXA2 Interaction with S100A10 and S100A11 in infected macrophages 
(composing a Ca2+ sensing system) 

(Guerfali et al., 2008) 

ANXA3 Induction of angiogenesis in CL (Park et al., 2005) 
ANXA1 Malaria Influencing T-lymphocyte proliferation and inducing IL-10 (regulating 

proinflammatory responses) 
(Borges et al., 2013) 

ANXA7 Expression on infected-RBCs (increasing pathogenesis) (Lang et al., 2009) 
ANXA4, ANXA11 RBC-membrane and Maurer’s cleft organization (McHugh et al., 2020) 
ANX-like proteins Induction of mosquito infection by parasite (Dinglasan et al., 2007; Kotsyfakis et al., 2005;  

Martínez-Barnetche et al., 2007) 
ANXA2 American 

trypanosomiasis 
Interaction with ARF-6 (parasite invasion and replication) (Teixeira et al., 2015) 
Interaction with parasite mucins (mediating parasite invasion) (Onofre et al., 2022) 

ANXA1 Toxoplasmosis Regulation of inflammation and protective immune responses in 
ocular toxoplasmosis 

(Mimura et al., 2012) 

ANXA1, ANXA2, 
ANXA3 

Decreasing expression in infected placentas (triggering abnormal 
pregnancy) 

(Jiao et al., 2017) 

ANXA6 Interaction with SAG1 (facilitating parasite invasion and 
pathogenesis) 

(Zhou et al., 2021)  

Fig. 2. ANXs modulated in parasitic infections.  
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management of PTM sites both on parasite and infected-host cells ANXs 
might recognize the PTM-relevant down-stream cell signaling and offer 
a novel approach with therapeutic insights into parasitic infections. 

As mentioned, ANXs have a close relationship with cell signaling 
during disease and infection processes. There is an important functional 
association with regulatory RNAs which is likely relevant during the 
infectious process (Caserta and Ghezzi, 2021; Monastyrskaya, 2018). 
Different molecules including microRNAs (miRNAs, miRs) can alter 
ANX expression levels through direct regulation. Evidence has shown 
that the taurine-upregulated gene 1 (TUG1)/miR-140–3p/ANXA8 axis 
exerts an important function in bladder cancer progression and metas-
tasis. TUG1 increases this process via regulating ANXA8 expression by 
sponging miR-140–3p (Yuan et al., 2021). ANXs expressed in parasites’ 
structure and in infected cells might be also regulated through RNA 
networks involving mRNAs, miRNAs, and long non-coding RNAs 
(lncRNAs) during pathogenesis. The characterization of ANXs and 
miRNAs in parasite secreted exosomes might further reinforce this hy-
pothesis and might constitute the basis for future experimental studies 
(Nawaz et al., 2019). 

4. Conclusion 

Preliminary structural information available for parasite ANXs 
highlights that different parasite clades express ANXs with unique 
properties. Nevertheless, different pivotal biomolecules expressed on 
the parasite surface could serve as mimicking or hijacking strategies to 
evade host immune responses leading to a high sequence similarity 
between parasites and their host cell proteins (Han et al., 2009; Ludin 
et al., 2011). The comparison of parasite alignment identity with the 
host ANXs could be fruitful in this sense, since most host ANXs are 
correlated with key extracellular and intracellular functions in the host 
but also those at the host-pathogen interface during immune evasion 
(Huang et al., 2022; Schloer et al., 2018). The parasite probably mimics 
and expresses the host ANXs on their structure to adapt to the host cell 
condition and evade the host immune responses, making these proteins 
plausible targets for translational research aimed at developing thera-
peutic or prophylactic solutions mainly against intracellular parasites. 

In addition to the direct effect of parasite ANXs on host cell re-
sponses, a wide range of other effectible parasitic proteins can also 
induce sophisticated mechanisms to change host ANX expression and 
consequently alter the host cell response (Cantacessi et al., 2013). A 
clear focus on the identification of new ANXs and their relevant cell 
signaling pathways will provide an in-depth description of their func-
tions, particularly in intracellular protozoan parasites. In this sense, the 
discovery of relevant protein-protein effector interactions by modern 
proteomics approaches could allow the identification of important 
virulence factors of intracellular parasites targeting host ANXs (Knuff--
Janzen et al., 2021). Parasites can also recruit potential mechanisms 
including the secretion of major anticoagulant protein ANXs (through 
EVs) to manage and restrict host hemostatic responses, facilitating blood 
feeding (Nawaz et al., 2019). Thus, in addition to the modulated parasite 
and host ANXs, the identification of ANXs released from parasite EVs 
and their crucial interactions with host cell proteins might open up a 
new avenue of research into the processes at play during parasitic in-
fections (Song et al., 2021, 2016; Yang et al., 2021). 

Overall, this information supports the idea that the discovery of 
novel ANXs both in parasites and infected host cells/tissues and relevant 
proteins and cell signaling might shed some light on the pathogenic 
processes of parasitic diseases. Consequently, such data indicate that the 
use of analogous of ANX peptides that mimic their physiological func-
tions or the regulation of different ANXs through various strategies 
might provide novel therapeutic insights into the treatment of parasitic 
infections and other diseases (Mui et al., 2021). Furthermore, due to the 
prominent immunoregulatory actions of ANXs during several parasitic 
infections and based on the expression levels of these proteins in some 
parasitic-infected tissues (Song et al., 2021), such promising proteins 

might be also vaccine and diagnostic biomarker candidates. However, 
more experimental and trials are required to corroborate and validate 
the aforementioned hypotheses. 

Although ANXs have been detected in genomes and are expressed by 
parasites, such molecules have been far better characterized in mam-
mals than in parasites. However, their prominent expression levels, 
functional roles and exposure in many parasite species have led to a 
number of candidate ANXs and more interestingly, specific epitopes as 
potential vaccine antigens with variable but moderate protection levels 
(Hofmann et al., 2010; Leow et al., 2019). Thus, more experimental 
strategies and approaches are required to confirm the potential of 
ANX-based vaccines against parasite infections and to understand the 
molecular mechanisms of these vaccines. The potential for autoimmune 
responses elicited by cross-reactive antibodies is not very high due to the 
presence of parasite-specific epitopes or simply the antigen introduction 
procedure (Carvalho-Queiroz et al., 2004). 
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