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ARTICLE INFO ABSTRACT
Keywords: Nowadays, the presence of humic acid (HA) in water sources is highly regarded due to the pro-
Humic acid duction of extremely harmful byproducts such as trihalomethanes. In this study, the effectiveness
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Photocatalytic

Solar light

Visible light

of an AgsPO4/TiO; catalyst produced by in situ precipitation as a heterogeneous catalyst for the
degradation of humic acid in the existence of visible and solar light was evaluated. The AgsPOy4/
TiOy catalyst’s structure was characterized using X-ray powder diffraction (XRD), scanning
electron microscopy (SEM), and energy dispersive spectroscopy (EDS), after which the catalyst
dosage, HA concentration, and pH parameters were adjusted. After a 20-min reaction, the highest
HA degradation of 88.2% and 85.9% in presence of solar light and visible light were attained at
the ideal operating conditions of 0.2 g/L catalyst, 5 mg/L HA, and pH 3, respectively. It was
discovered that, based on kinetic models, the degradation of HA matched both Langmuir-
Hinshelwood and pseudo-first-order kinetics at concentrations of 5 to 30 mg/L (R2 > 0.8). The
Langmuir-Hinshelwood model had surface reaction rate constants (K.) of 0.729 mg/L.min and
adsorption equilibrium constants (Kj.g) of 0.036 L/mg. Eventually, a real-water investigation into
the process’ effectiveness revealed that, under ideal circumstances, the catalyst had a reasonable
HA removal efficiency of 56%.

1. Introduction

One of the current environmental issues is the existence of organic contaminants in water supplies, including humic acids (HA).
One of the primary components of natural organic matter (NOM) is humic acid, a non-uniform macromolecular polymer [1,2]. In both
surface and groundwater, HA is a complicated molecule that is frequently present. Humic acid concentrations in drinking water have
been measured to be between 2 and 15 mg/L [3,4].

Humic acids include organic functional groups including hydroxyl, carboxyl, carbonyl, methoxy, and quinone groups that can
interact with organic and inorganic contaminants in water through mechanisms like absorption, ion exchange, and chelation, resulting
in a decline in water quality [5-7]. HA can dissolve in water in very acidic circumstances, whereas fulvic acid is entirely soluble in
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water [6,8]. As a result, it is crucial to remove HA from water sources since it serves as a precursor to disinfection byproducts, which is
a challenging task. In order to remove HA from aquatic environments, several researchers have utilized a variety of techniques,
including chemical coagulation [9], electrocoagulation [6], adsorption [10-14], ion exchange [15], membrane processes or mem-
brane separation [16-18], Fenton [19,20], and photocatalysis [3,21,22]. Among these techniques, advanced oxidation processes
might be considered.

Advanced oxidation processes generate free radicals with strong oxidizing activity, and as a result, organic compounds are
destroyed into simple, low-danger molecules. The complete degradation of organic materials, lack of toxicity, absence of sludge
generation, formation of compounds with strong oxidizing capabilities, non-corrosiveness of equipment’s pieces, and simplicity of
application are all benefits of this process [23,24]. Nanoparticles called nanocatalysts are utilized in advanced oxidation processes to
boost effectiveness [25].

Heterogeneous catalysts provide a variety of advantages including the capacity to be reused, high stability, simplicity in separation,
and cost-effectiveness. They also help the oxidation process proceed more quickly and efficiently [26,27]. Ultrasound, UV, heat,
electricity, and other forms of energy are employed to activate these nanocatalysts.

In recent years, there has been a lot of interest in the photocatalytic destruction of organic molecules and environmental con-
taminants. Due to its unique qualities in bonding position and surface structure, chemical stability, and lack of toxicity, TiO; is one of
the most well-known photocatalysts among other semiconductors. However, due to the high band gap distance and TiO,’s inability to
use them, visible photons, which make up a considerable portion of the solar spectrum, are limited in their practical uses. In order to
develop visible light photocatalysts, a variety of metal oxides, such as AgsPO4 with a short band gap spacing, which provides new
possibilities for photon gathering in the visible range, can be combined with TiO,. As a novel visible light absorption semiconductor,
silver orthophosphate (AgsP0O4), which has a dark golden hue, has frequently garnered attention [28-30].

Although various nanoparticles, including FeNig@SiO,@TiO, [31], Mny03-Al,03 [32], PAC-LaFeO3-Cu [33], Fe304/TiO2-N-GO
[34], Ce-ZrO4 [35], Ag/ZnO [21,36], CuO-Co304@AC [37], FeNig@SiO [38] have so far been utilized as a catalyst in the degradation
of humic acids.

The removal of humic acid using Ag3PO4/TiO5 nanoparticles in the presence of solar light and visible light has not yet been re-
ported. Contrary to earlier research, which employed ultraviolet light radiation for this nanoparticle. In this work, visible light and
solar light were utilized to boost the effectiveness of this nanoparticle since they are more accessible, less expensive, and environ-
mentally friendly than other methods. As a result, the goal of this study was to provide a low-cost environment in which to lower the
amount of HA in water. Since spectrophotometric measurement is a convenient and effective method for detecting HA, it was also
utilized in this study. The effects of the initial HA concentration, the dosage of nanoparticles, and the initial pH value on HA degra-
dation were also investigated.

2. Materials and methods
2.1. Chemicals and instruments

Merck Company (Germany) supplied silver nitrate (AgNOs3). Degussa (Germany) provided the P25 titania (TiO3), while Sigma-
Aldrich provided the NagPO4 for the catalyst production. Sigma-Aldrich was also used to purchase the humic acid, sodium hydrox-
ide (NaOH), and hydrogen chloride (HCI). The pH of the solutions was adjusted with HCl and NaOH (1 N), and the pH was detected
with a pH meter (Wegtech Mi 151 22, UK). At a maximum wavelength of 254 nm, a UV-vis spectrophotometer (Model Optima SP3000
Plus, Japan) was utilized to measure the concentration of HA. The structure of this yellow nanocomposite, which acts as a hetero-
geneous catalyst, was studied using XRD, SEM, and EDS tools. XRD (Bourevestnik-Dron8) was used to characterize the shape and phase
of a nano-crystal catalyst, SEM (TESCAN-Vega3) was used to study the structure, morphology, and surface characteristics of the nano-
catalyst on the nanoscale, and EDS (TESCAN-Vega3) was used to evaluate the component mass percentages at the nano-catalyst and
BET to quantify the size of a particular area in the nanocatalyst (BELSORP MINI II). After validating the physical and chemical
composition of the heterogeneous nanocatalyst, it was utilized to degrade HA in an aqueous media.

2.2. Preparation of AgsP0O4/TiO,

The in situ precipitation approach developed by Yao et al. was used to synthesize silver phosphate (Ag3PO4) deposition onto titania
(P25) [39]. In 50 mL of deionized water, 1.6 g of titania (P25 with 80% anatase and a surface area of 50 m?/ g) was disseminated and
sonicated for 5 min. Following sonication, 3.05 g of AgNOgs was introduced to the titania disseminated water and magnetically agitated
for 10 min at 200 rpm. The sodium phosphate was distributed in 50 mL of deionized water before being dropped into the reaction
mixture. For 300 min, the finished solution was magnetically agitated. The color of the mixture was then altered from white to yellow.
After that, the AgsP0O4/TiO» nanocomposite was strained, rinsed with water and ethanol, and dried for 12 h at 60 °C. After preparing
the heterogeneous catalyst, it was utilized in a photocatalytic process and characterization.

2.3. Batch photocatalytic experiments
The photocatalytic process was influenced by pH, catalyst dose, initial HA concentration, and contact duration, which were all

investigated and modified. From a stock HA solution with a 500 mg/L concentration, HA concentrations of 5, 10, and 25 mg/L were
produced. To find the optimal catalyst dose, the study examined 0.1, 0.15, 0.2, and 0.3 g/L. The experiments examined pH values of
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three to eleven (3, 7, and 11), as well as contact times of 3, 5, 10, 20, 30, and 45 min. The experiment was conducted using a 250 mL
aluminum-covered container with a 20-W bulb lamp for visible light, then with the same container without the aluminum cover in

direct solar light. The following formulas were used to calculate the degrading efficiency of HA (Eq. (1)):

Removal Efficiency (%) =

Co—C
G (Eq.1)

0

Where the concentrations of HA before and after contact time are shown by Cp and C; (mg/L) [40].
2.4. Determine the pHyp,

The pH,p. was determined utilizing 50 mL of KCI 0.1 M mixture at six pHs (2, 4, 6, 8, 10, and 12) and 0.01 g of heterogeneous
catalyst nanoparticles. After 24 h, set the prepared mixtures on the shaker and take the pH reading. Utilizing the formula ApH =
PHfinal-PHinitial, the resulting curve was displayed as X = initial pH and Y = ApH. The pHy. is the X-axis point where the curve in-
tersects [41].

3. Results and discussion
3.1. Characterization of AgsPO4/TiO2

The FESEM images of the synthesized AgsP0O4/TiO, heterogeneous catalyst were used to assess the morphology, size, and shape.
FESEM images of the AgsPO4/TiOy heterogeneous catalyst synthesized are shown in Fig. 1(a—c). The AgsPO4/TiO2 heterogeneous
catalyst structure was formed into a sphere-shaped and nano-heterogeneous catalyst that was loosely aggregated, uniformly, and
smoothly. The particle size of this catalyst is shown in Fig. 1c. It may be stated that the mean particle size of AgsPO4/TiO; hetero-
geneous catalyst is 50-60 nm according to the particle size.

EDS analysis was used to assess the homogeneity and chemical structure of the produced AgsPO4/TiO, heterogeneous catalyst
(Fig. 2). The EDS results show that the chemical structure of AgsPO,4/TiO, heterogeneous catalyst contains 65.3% Ag, 17.7% Ti, 9.2%
O, and 7.7% P, which are all within the predicted range.

XRD analysis was performed to characterize the AgsPO,4/TiOy heterogeneous catalyst’s phases, structures, and crystalline
constitution. Fig. 3 depicts the XRD findings. Based on the Joint Committee on Powder Diffraction Standards (JCPDS 96-591-0064),
the AgsPO4/TiO5 heterogeneous catalyst crystal phase structure and XRD pattern with diffraction peaks at 20, except for the peak at
25.3° indexed to the (101) plane of TiO, (P25), additional peaks at 20 values of 20.93° (110), 29.78° (200), 33.39° (210), 36.68° (211),
47.94° (310), 52.85° (222), 55.19° (321) indexed to AgsPO4. Furthermore, the observed peak at 20~32.5° is attributable to the lattice
distortion in the structure of the nanocatalyst caused during its synthesis. The AgsPO4/TiO3 heterogeneous catalyst crystal structure
was successfully conserved, according to the findings. Its proper and high-performance synthesis was demonstrated by the findings of
this nanocatalyst’s characterization, which were extremely comparable and consistent to those of the nanocatalyst synthesized by
Taheri et al. [24].

The AgsP04/TiO3 adsorption/desorption isotherm and the BJH specific surface area are shown in Fig. 4. To determine the AgsPO4/
TiO4 nanocatalyst’s BET surface area, N3 adsorption/desorption studies were conducted. The monolayer volume of gas adsorbed was
calculated using the BET equation, which can then be used to determine the surface area of the adsorbent [42]. The total pore volume
and BJH of the produced nanocatalyst (p/pg = 0.990) were calculated using the ADS/DES plot. This value was 47.138 m?/g.
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Fig. 1. SEM images (a—c) of Ag3PO,/TiO, heterogeneous catalyst.
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Fig. 4. Adsorption/desorption isotherm and BJH surface area of AgsPO,4/TiO, nanocatalyst.

3.2. Optimization of effective parameters on HA degradation

3.2.1. Effect of catalyst dose

Heliyon 9 (2023) e15678

Catalyst dosages of 0.1 to 0.3 g/L were investigated in the study of HA degradation. Fig. 5 shows that increasing the AgsP0,4/TiO5
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Fig. 5. Comparison of removal efficiency at different catalyst doses in presence of visible (a) and solar (b) light (HA concentration: 5 mg/L, pH: 7).

catalyst dosage from 0.1 to 0.3 g/L enhanced the removal effectiveness of HA from 69.6% to 78.1% for visible light and 70.9% to
80.4% for solar light in 20 min. The formation of additional hydroxyl radicals by the catalyst in the reaction medium may be the
explanation for improving the effectiveness of HA degradation by raising the catalyst dosage. On the other hand, by raising the catalyst
dosage from 0.2 to 0.3 g/L, the efficiency rises slightly from 76.8% to 78.1% in visible light and 78.4% to 80.4% in solar light, which
might be attributed to a limitation of HA leaving in the reaction medium [43-45]. So, the 0.2 g/L of catalyst dose was considered an
optimal catalyst dose. The presence of UV rays in sunlight explains how sunlight has a better efficacy of elimination than visible light.
This beam excites the majority of electrons on the catalyst’s surface and ultimately releases their energy, forcing water molecules to
generate hydroxyl (®0OH) and superoxide (O®) radicals, which then break down the HA molecules [46]. The findings of this study
accord with those of Nasiri et al. which discovered that when the catalyst dosage is increased, the removal efficiency improves as well
[471.

3.2.2. Effect of HA initial concentration

Concentration levels of 5, 10, and 25 mg/L were studied for the initial influence of HA on degrading effectiveness. Fig. 5 shows that
when the concentration of HA increases from 5 to 25 mg/L, its degradation effectiveness declines from 76.8% to 62.5% for visible light
(Fig. 6a) and from 78.4% to 63.3% for solar light (Fig. 6b) in 20 min. This was because raising the concentration of HA increased the
formation of intermediates and by-products. However, while the quantity of ®OH and Of generated in the reaction medium stayed
unchanged, the significant inclination of by-products and intermediates to react with ®OH and O® hindered additional decomposition
of HA in the reaction medium, lowering its degradation effectiveness [41,48]. As a consequence, 5 mg/L of HA was shown to be the
optimal initial concentration. Similar findings were achieved in research conducted by Khodadai et al. on the photocatalytic degra-
dation of HA, and it was discovered that as the concentration of HA increases, its removal effectiveness decreases [49].
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Fig. 6. Comparison of removal efficiency at different HA initial concentrations in presence of visible (a) and solar (b) light (Catalyst dose: 0.2 g/L,
pH: 7).
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3.2.3. Effect of pH on HA degradation

pH is a critical parameter that influences the solubility of HA, kinetics, radical generation, and catalyst surface characteristics. pHs
3,7, and 11 were investigated to see how pH affected the removal effectiveness of HA. In this section, it was discovered that raising the
pH from 3 to 11 reduces the removal effectiveness of visible light from 85.6% to 73.5% and solar light from 88.2% to 71.3% in 20 min
(Fig. 7a and b). The insolubility and precipitation of HA in the reaction media, which is attributable to the nature of this organic matter,
is one of the reasons for improving its removal effectiveness at acidic pH. When HA decomposes in the reaction medium, mineral
compounds such as CO5 are generated, and CO» is transformed to HCO3 in alkaline media, where it consumes active and energetic
hydroxyl radicals. It generates CO® radicals since it has decreased oxidation potential, lowering HA elimination efficiency (Eq. (2))
[46]. Furthermore, the surface charge of the catalyst turns negative at pHs over 6.7 and positive at pHs under 6.7, according to the
catalyst’s pHgpc of 6.7 (Fig. 7c). Humic acid, on the other hand, has two pKa; = 4 and pKa = 8, and it forms positively charged ions at
pHs less than 4, zwitterion or neutral at pHs between 4 and 8, and negatively charged ions at pHs greater than 8, so at an optimum pH
of 3, there are repulsive electrostatic forces, and HA is an organic molecule and hydrophobic interactions are dominant mechanism for
near HA molecules to the catalyst surface, ultimately leading to degradation [50,51]. Similar results were achieved in Mohtar et al.
investigation of the degradation of humic acid, confirming the findings of this study [52].

HCO3 + ®OH — CO®+ H,0 (Eq. 2)

3.3. Kinetic study of HA degradation

The pseudo-first-order kinetic (Eq. (3)) and Langmuir-Hinshelwood (Eq. (4)) models were used to examine HA degradation kinetics.
The reactions that take place on the surface of reactants have different adsorption processes as well as rate equations that are essential
for heterogeneous catalysis. One of the most frequent models for explaining heterogeneous catalytic processes is the Langmuir-
Hinshelwood kinetic. The contaminant adsorption on catalyst active sites is studied in this model [53].
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Fig. 7. Comparison of removal efficiency at different pHs in presence of visible (a), solar (b) light, and pH,p. (c) (Catalyst dose: 0.2 g/L, HA
concentration: 5 mg/L).
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n—= — Kt (Eq 3)
Where Cp and C; (mg/L) are the initial and after-contact HA concentrations, respectively, and K,p; is the reaction rate constant (min~ 1.

L1 G
Kos KcKiw  Kc

(Eq. 4)

Where K, represents the surface reaction rate constant (mg/L.min) and K;.y represents the adsorption equilibrium constant (L/mg).
The value of K,ps was calculated for the various concentrations displayed in Table 1 by graphing In (C,/Cp) vs time [45].

Then, utilizing the linear equation derived by graphing the curve Ky vs the initial concentration depicted in Fig. 8, the coefficients
of K. and K were computed. The coefficients of K. and K.y were 0.729 mg/L.min and 0.036 L/mg, respectively, based on the result
acquired from this curve. These findings also revealed that HA degrades according to pseudo-first-order and Langmuir-Hinshelwood
kinetics. Research on humic acid decomposition was performed by Kamani et al. Humic acid decomposition follows pseudo-first-
order and Langmuir-Hinshelwood kinetics, according to the study [54].

3.4. Investigation of process efficiency on real water

The impact of the AgsPO4/TiO; catalyst process on HA degradation in real water was studied in this research. A sample of real
water was obtained from a water treatment plant in Shiraz, Iran, according to parameters NO3: 29.5 mg/L, total hardness: 462 mg/L,
SO4: 164 mg/L, Chloride: 81 mg/L, pH: 7.8, total dissolved solids (TDS): 665 mg/L, and Na: 54 mg/L. The removal effectiveness of HA
from real water was 56% and 59.5% in presence of visible and solar light respectively, at the optimum conditions (pH 3, HA con-
centration 5 mg/L, and catalyst dosage 0.2 g/L) derived from the synthetic sample experiment, indicating the acceptable efficiency of
this process in the treatment of real water. The reduced removal effectiveness of HA in real water may be attributed to the existence of
impurities including cations, anions, TDS, as well as other impurities, which are removed as a consequence of the oxidation process; on
the other hand, there could be inhibiting cations and anions in real water that serve as scavengers and diminish the activity of free
radicals [55]. The findings of Acero et al. investigation of real water samples were similar to the findings of this study [56].

3.5. Degradation mechanism and stability of nanocatalyst

The heterogeneous catalyst structure between AgsPO4 and TiO2 can explain the increased photocatalytic activity of AgsPO4/TiO2
relative to ordinary TiO,. The photocatalytic efficiency of TiO5 is improved by coating AgsPO4 on its surface, which enhances light
absorption and enables electron-hole segregation according to their corresponding band orientations [57,58]. The border potentials of
Ag3POy4’s conduction band (CB) and valence band (VB) are +0.45 and + 2.9 eV, respectively, which are higher than TiO, (—0.5 and +
2.7 eV, respectively) [59-61]. Either AgsPO4 and TiO; can be activated when exposed to light. Photon-generated holes in AgsPO4’s VB
rapidly move to TiO2, while photon-generated electrons move to AgsPO4’s CB. So, to the imposed electric field, photon-generated holes
in the VB of AgsPO4 might move to TiO, during light irradiation, whilst AgsPOy4 serves as a sensitizer absorbing light [45,62-64]. As a
result, the electron-hole coupling mechanism is hindered, resulting in increased photoactivity of AgsPO4/TiO,. Under solar and visible
light irradiation, the proposed mechanism of photocatalytic decomposition of HA over Ag3PO4/TiO,. Photon-generated holes in
Ag3POy particles easily move to the VB of TiO2 when exposed to light. Since the VB value of TiO3 (+2.7 eV) is more positive than the
typical redox potential E° (OH/OH™, 1.99 eV), the holes in the VB of TiO, may oxidize OH™ or H,0 to produce OH radicals (as
demonstrated in Egs. (3) and (4) [51,65]. Nevertheless, the CB of AgsPO4 (+0.45 eV) is lower than the normal redox potential of E°
(02/H303) (0.682 eV), implying that the electrons in the CB of AgzPO4 can be transported to O, molecules adsorbed on the photo-
catalysts’ surfaces and produce HoO5 [66]. As seen in Egs. (5) and (6), HoO2 combines with electrons in a series to form active ®0H to
some amount. As a result, strongly oxidative species such as ®OH and holes are generated, which react with the HA in aqueous media
(Eq. (7)) [43,671.

"+ H,0 - ®OH + H (Eq. 3)

"+ OH™ - ®OH (Eq. 4)

2¢4 0y + 2H" = Hy0, (Eq. 5)
e+ H,0, > ®OH + OH™ (Eq. 6)
®0H, h" + HA » CO» + H;0 + ... (Eq. 7)

The nanocatalyst was filtered from the reaction media once the experiment was finished, and its structure was analyzed using SEM
analysis (Fig. 9 a and b). According to the analysis’s findings, the stability of the nanocatalysts was shown by the fact that their
morphology was conserved once the reaction was over. The concentration of Ag (328.1 nm) and Ti (363.4 nm) were determined using
an Atomic Absorption Spectrophotometer (AAS, CTA-3000) following the reaction in an aqueous solution to ascertain the chemical
stability of Ag3sPO4/TiOs. The measurements made using this device’s findings show that the concentration of Ag was 4.5 mg/L and Ti
was below the AAS detection limit, indicating that this nanocatalyst has the necessary chemical stability [68,69].

To assess the main radicals in the humic acid degradation process, the radical scavenger’s benzoquinone (BQ) and tert-butanol
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Table 1

pseudo-first-order kinetic parameters of HA degradation.

Heliyon 9 (2023) e15678

Co (mg/L) R? Kobs Line Equation
5 0.837 52.356 y = —0.0191x - 1.6445
10 0.890 64.516 y = —0.0155x% - 1.746
25 0.814 81.301 y = —0.0123x - 1.4367
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Fig. 8. Langmuir-Hinshelwood kinetic curve (Catalyst dose: 0.2 g/L, HA concentration: 5 mg/L, pH: 3, and time: 20 min).
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Fig. 9. SEM images after finishing process (a and b).

(TBA) were utilized for superoxide (*O2) and hydroxyl radicals ("OH), respectively [70]. The elimination efficiency dropped from
88.2% to 61.5% when BQ was added to the reaction medium in the presence of solar light, and it dropped to 31.6% when TBA was
added. This indicates that hydroxyl radicals were the dominant radicals in the degradation of humic acid.

Table 2

Comparison of the performance process VS other processes in HA degradation.
No. Catalyst Catalyst dose (g/L) Initial Concentration (mg/L) Time (min) Removal Efficiency (%) Ref.
1 NiCo204 0.2 10 120 90 [71]
2 PAC/LaFeOs/Cu 0.72 5.33 36.2 95.5 [72]
3 PE-TiO, 6.0 10 270 64.5 [73]
4 CeO2/AC 0.5 50 30 75 [74]
5 TiO2/Fe303 0.4 20 180 61.6 [75]1
6 CuO-Co304@AC 0.5 100 60 88 [76]
7 Ag/ZnO 0.6 50 40 70 [77]
8 Ag3PO4/TiOy 0.2 5 20 88.2 This study
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3.6. Comparison with other catalysts to HA degradation

As indicated in Table 2, due to the experimental settings, the procedure examined in this study has a higher removal efficiency than
in previous studies. Solar light has been utilized as a catalytic activator in all of the processes. Based on the findings of previous
research, the amount of catalyst used in this study was reasonable given the high removal effectiveness and short contact time, and it
was also higher cost-effective than some others.

4. Conclusion

A simple and effective approach was used to produce AgsPO4/TiO; as a nano-heterogeneous catalyst. SEM, XRD, and EDS analyses
were used to characterize the structure of this nano-heterogeneous catalyst. The particle size was 50-60 nm on the mean, according to
SEM. The crystal structure of this catalyst was effectively retained, according to XRD measurements. Under optimum conditions, this
catalyst removed humic acid from the aqueous medium with an efficiency of 88.2% and 85.9% in presence of solar light and visible
light, respectively: catalyst dosage 0.2 g/L, starting concentration 5 mg/L, and pH 3. The decomposition of HA follows all these kinetics
with coefficients of determination (R?) of 0.837, 0.890, and 0.814 at concentrations of 5, 10, and 25 mg/L, respectively, according to
the pseudo-first-order kinetic and Langmuir-Hinshelwood model. K. and K; g were also discovered to be 0.729 mg/L.min and 0.036 L
mg, respectively. This catalyst’s and process’s effectiveness indicated that it may be used to remove other organic compounds.
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