Dental Research Journal, Vol 20, No 5 (2023)

DRJ Dent Res J Dental Research Journal Dental Research Journal

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

1735-3327 2008-0255 Wolters Kluwer India Pvt. Ltd. India DRJ-20-58 10.4103/1735-3327.377578 Original Article Histological evaluation of ProRoot mineral trioxide aggregate and Cold ceramic as root-end filling materials in animal models Modaresi Jalil Khademi Abbasali Hemati Hamidreza Mokhtari Fatemeh Department of Endodontics, School of Dentistry, Shahid Sadoughi University of Medical Sciences, Yazd, IranDepartment of Endodontics, Dental Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, IranDepartment of Endodontics, Dental Research Center, Dental Research Center, Dental Research Institute, School of Dentistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran Address for correspondence:Hamidreza Hemati, Department of Endodontics, Dental Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Yazd, Iran Address for correspondence:Hamidreza Hemati, Department of Endodontics, Dental Research Center, Dental Research Institute, School of Dentistry, Isfahan, Iran hr.hemati94@gmail.com Jan–Dec 2023 20 1 58 58 2942021 Copyright: © Dental Research Journal 2023

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

This study aimed to evaluate the reaction of the periapical tissue to Cold ceramic and mineral trioxide aggregate (MTA) following periapical endodontic surgery.

In this experimental study, a total of 12 mandibular first, second, and third premolars of two male dogs were selected. All procedures were performed under general anesthesia. The access cavities were prepared, and the length of canals was determined. Root canal treatment was performed. A week later, periradicular surgery was performed. After osteotomy, 3 mm of the root end was cut. Then, a 3-mm cavity was created by an ultrasonic. The teeth were randomly divided into two groups (n = 12). The root-end cavities were filled with MTA in the first group and with Cold ceramic in the second group. After 4 months, the animals were scarified. Histological evaluation of the periapical tissues was performed. Data were analyzed using SPSS 22 and Chi-square test and P = 0.05.

In this experimental study, a total of 12 mandibular first, second, and third premolars of two male dogs were selected. All procedures were performed under general anesthesia. The access cavities were prepared, and the length of canals was determined. Root canal treatment was performed. A week later, periradicular surgery was performed. After osteotomy, 3 mm of the root end was cut. Then, a 3-mm cavity was created by an ultrasonic. The teeth were randomly divided into two groups (n = 12). The root-end cavities were filled with MTA in the first group and with Cold ceramic in the second group. After 4 months, the animals were scarified. Histological evaluation of the periapical tissues was performed. Data were analyzed using SPSS 22 and Chi-square test and P = 0.05.

The findings showed 87.5% and 58.3% cementum formation in MTA and Cold ceramic groups, respectively, indicating a significant difference (P < 0.001). In addition, the results showed 91.7% and 83.3% bone formation in MTA and Cold ceramic groups, respectively, but the difference was not statistically significant (P = 0.6). Furthermore, the findings revealed 87.5% and 58.3% periodontal ligament (PDL) formation in MTA and Cold ceramic groups, respectively (P = 0.05).

Cold ceramic was able to induce the regeneration of cementum, bone, and PDL; hence, it can be considered as a biocompatible root-end filling material in endodontic surgery.

Apicoectomy mineral trioxide aggregate root canal filling materials

The main objectives of using root-end filling materials are achievement of apical seal and prevention of the spread of intracanal infection to periapical tissues.¹ Every root-end filling material should ideally be able to induce the regeneration of periradicular complex, including new bone, periodontal ligament (PDL), and cementum.²,³ Formation of cementum on the filling material and dentinal wall of the root produces a physical and biologic coating on the root end, which acts as a barrier against the harmful residues remaining in the root canal system.⁴ In endodontic surgery, after preparation of the root-end cavity, the root end is sealed with a filling material. This material should ideally prevent the penetration of intracanal stimulants into periapical tissues.⁵

Mineral trioxide aggregate (MTA) is a root canal sealing material that is composed of dicalcium silicate, tricalcium silicate, tricalcium aluminoferrite. MTA is an active biologic material for the bone cells that stimulates the production of interleukins due to its alkaline pH and calcium ion release.^{3,6,7} MTA produces lower inflammation and provides better improvement than other common filling materials, is capable of PDL regeneration, and creates new cementum deposition on its surface.^{3,4,7} The disadvantages of MTA include difficult handling and slow setting reaction, which can lead to leakage, surface degeneration, loss of marginal adaptation and consistency of the materials, potential tooth discoloration, and high cost.^{8,9}

Cold ceramic is a newly introduced root-end filling material that can be used in periapical surgery.¹⁰ Calcium oxide, silicone oxide, and barium oxide constitute approximately 93% of the chemical compounds of this material.^{11,12} Initial setting time of Cold ceramic is about 15 min, and its complete setting takes 24 h.¹³

Every root-end filling material should ideally stimulate new bone formation, cementum, and PDL.^{2,3,9} Although Cold ceramic showed promising result in endodontics, to the best of our knowledge, there is no study about the Cold ceramic as root-end filling material. Hence, this study aimed to evaluate the reaction of the periapical tissue to Cold ceramic and mineral trioxide aggregate (MTA) following periapical endodontic surgery.

This experimental study was approved by the ethics committee of the university research center (IR.SSU.REC.1396.57). A total of 12 mandibular first, second, and third premolars of two male dogs aged 1–2 years weighing 20–25 kg were selected. They were kept in the animal house of the Torabinejad Dental Research Center, according to the protocol of the center. All procedures were performed under general anesthesia with intramuscular administration of 0.11 mg/kg 2% acepromazine followed by intravenous administration of 6% pentobarbital.

The access cavities were prepared, and the length of canals was determined by #15 K-file (Dentsply, Maillefer, Tulsa, OK, USA). Apical preparation was done by step-back method up to file #35 along with copious irrigation with 5 ml 2.5% sodium hypochlorite. The root canal was obturated with gutta-percha (META, Korea) and AH 26 sealer (Dentsply, Tulsa, OK, USA) by lateral condensation technique, and access cavities were restored with amalgam.

A week later, periradicular surgery was performed following general and local anesthesia as well as oral disinfection. The surgical procedure was carried out by creating a submarginal incision and a full-thickness mucoperiosteal flap on the buccal side using a vertical releasing incision in the distal third premolar to provide better access to the apical area of the canal. After osteotomy, 3 mm of the root end was cut. Then, a 3-mm cavity was created by an ultrasonic (Satelec p5; Dentsply, Tulsa, OK, USA). The teeth were randomly divided into two groups (n = 12). The root-end cavities were filled with ProRoot MTA (Dentsply, Tulsa, USA) in the first group and with Cold ceramic (Dental School, Yazd, Iran) in the second group. In the end, the mucoperiosteal flap was overturned and sutured.

After 4 months, the animals were scarified by barbiturate overdose and 10% buffered formalin perfusion. Block sections were prepared from the jaws containing the teeth by cutting discs. The samples were placed in 5% formic acid for 2 months to demineralize. Six-micrometer sections were consequently prepared from each sample in buccolingual direction. Then, the samples were evaluated by an oral pathologist to determine the development of inflammatory cells around the filling material and formation of cementum, bone, and PDL under a microscope. Data were analyzed by SPSS 22 (IBM Corp., Armonk, NY, USA) and Chi-square test and P = 0.05.

The results showed 87.5% and 58.3% cementum formation in MTA and Cold ceramic groups, respectively, indicating a significant difference between them (P < 0.001). Furthermore, the results showed 91.7% and 83.3% bone formation in MTA and Cold ceramic groups, respectively, but the difference was not statistically significant (P = 0.6).

The findings revealed 87.5% and 58.3% PDL formation in MTA and Cold ceramic groups, respectively, indicating a significant difference between groups (P = 0.05). Moreover, the findings showed 83.3% and 58.3% mild inflammation and 16.7% and 41.7% severe inflammation in the MTA and Cold ceramic groups, respectively, indicating no statistically significant difference between groups (P = 0.6) Figure 1 and Figure 2.Figure 1

Root-end filling with ProRoot MTA (×100), MTA: Mineral trioxide aggregate.

Figure 1Figure 2

Root-end filling with Cold ceramic (×40).

Figure 2

The normal periradicular complex is composed of different tissues, including cementum, PDL, and bone. A desirable characteristic of root-end filling materials is their ability to regenerate the normal and functional periradicular complex. Every root-end filling material should ideally stimulate the formation of new bone, cementum, and PDL.⁵,¹⁴

The findings of the present study showed that the cementum-like tissue formed was significantly higher in ProRoot MTA than in Cold ceramic, confirming the results of previous studies on the high potential of cementum formation on MTA.⁵, ¹⁵, ¹⁶, ¹⁷, ¹⁸, ¹⁹ Cold ceramic is also able to form cementum because the base of Cold ceramic is calcium hydroxide, has tissue compatibility, and is able to create an alkaline environment.²⁰, ²¹ Therefore, the ability to induce cementogenesis from a root-end filling material with these properties is not out of expectations. The lower amount of cementum formed on the Cold ceramic can be attributed to the duration of the study. Formation of cementum in the present study took 4 months, while studies have shown that a period of 3–6 months is required for continuous formation of cementum.² Furthermore, low level of cementum in the Cold ceramic group might be attributed to higher inflammation induced by this material compared to MTA in the short term.²²,²³ Notably, the formation of cementum is inversely correlated with periradicular inflammation. Inflammation is associated with the amount of acidic pH, which has adverse effects on the setting reaction, crystal formation, and mechanical characteristics of the material, which in turn affect the cementogenesis capacity.²

The amount of new bone formation was similar for both groups. Studies have shown that MTA and Cold ceramic have tissue compatibility and provide a favorable ground for new bone formation by creating an alkaline environment.³, ¹⁹, ²⁰, ²², ²⁴

In addition, the amount of PDL formation was significantly higher on MTA. The criterion for the determining of PDL in the present study was observing the development of collagen fibers which were connected to cementum and to the adjacent bone.²⁵ This amount of PDL formation was in line with the results of former studies on the formation of PDL when MTA was used as root-end filling martials.¹⁹ Long term evaluating of Cold ceramic apparently resulted in a rise in PDL formation.

Inflammation can cause tissue distraction, postoperative pain, and impeding tissue healing, so the root-end materials as the other materials in endodontics should not induce inflammation. This study indicated that the amount of periradicular inflammation was low and was not significantly different between MTA and Cold ceramic groups, confirming the histologic results of previous studies.^{22,26}

Based on the present study, the Cold ceramic showed a suitable histological assessment; however, the limitation of the present study should be noted. Some histological characteristics were evaluated in short term in this animal model. In addition, the other characteristics of Cold ceramic as root-end material should be evaluated.

Considering the limitations of animal studies, Cold ceramic were able to induce the regeneration of cementum, bone, and PDL; hence, it can be considered as a biocompatible root-end filling material in endodontic surgery.

Acknowledgment

The authors thank Torabinejad Dental Research Center of Dental School of Isfahan University of Medical Sciences for assistance on this project. The authors wish to thank Dr. Pedram Iranmanesh for his valuable comments on the paper.

Financial support and sponsorship

Nil.

Conflicts of interest

The authors of this manuscript declare that they have no conflicts of interest, real or perceived, financial or nonfinancial in this article.

1 Gartner AH Dorn SO Advances in endodontic surgeryDent Clin North Am 357 78 2 Torabinejad M Pitt Ford TR McKendry DJ Abedi HR Miller DA Kariyawasam SP Histologic assessment of mineral trioxide aggregate as a root-end filling in monkeysJ Endod 225 8 3 Torabinejad M Hong CU Lee SJ Monsef M Pitt Ford TR Investigation of mineral trioxide aggregate for root-end filling in dogsJ Endod 603 8 4 Bernabé PF Holland R Morandi R de Souza V Nery MJ Otoboni Filho JA Comparative study of MTA and other materials in retrofilling of pulpless dogs' teethBraz Dent J 149 55 5 Kim S Kratchman S Modern endodontic surgery concepts and practice: A reviewJ Endod 601 23 6 Torabinejad M Hong CU Pitt Ford TR Kettering JD Cytotoxicity of four root end filling materialsJ Endod 489 92 7 Pelliccioni GA Ciapetti G Cenni E Granchi D Nanni M Pagani S Evaluation of osteoblast-like cell response to ProRoot MTA (mineral trioxide aggregate) cementJ Mater Sci Mater Med 167 73 8 Parirokh M Torabinejad M Mineral trioxide aggregate: A comprehensive literature review-Part III: Clinical applications, drawbacks, and mechanism of actionJ Endod 400 13 9 Mozayeni MA Salem Milani A Alim Marvasti L Mashadi Abbas F Modaresi SJ Cytotoxicity of Cold ceramic compared with MTA and IRMIran Endod J 106 11 10 Modaresi J Talakoob M Comparison of two root-end filling materialsJ Isfahan Dent Sch 379 386 11 Modaresi J Hemati HR The cold ceramic materialDent Res J (Isfahan) 85 8 12 Mokhtari F Koopaei K Modaresi J Hemati HR Zandi H Experimental evaluation of the sealing ability of MTA and Cold ceramic by using bacterial leakage methodJ Dent Med 150 5 13 von Arx T Apical surgery: A review of current techniques and outcomeSaudi Dent J 9 15 14 Zerbinati LP Tonietto L de Moraes JF de Oliveira MG Assessment of marginal adaptation after apicoectomy and apical sealing with Nd: YAG laserPhotomed Laser Surg 444 50 15 Gutmann JL Harrison JW Posterior endodontic surgery: Anatomical considerations and clinical techniquesInt Endod J 8 34 16 Glickman GN Hartwell GR Surgical procedures in endodontics.In: Ingle JI, editorIngles Endodontics Surgical procedures in endodontics In: Ingle JI, editor Ingles Endodontics 6th ed, Hamilton, Ontario: BC Decker; 2008, P 1233-87 17 von Arx T Walker WA 3rd Microsurgical instruments for root-end cavity preparation following apicoectomy: A literature reviewEndod Dent Traumatol 47 62 18 Wuchenich G Meadows D Torabinejad M A comparison between two root end preparation techniques in human cadaversJ Endod 279 82 19 Gagliani M Taschieri S Molinari R Ultrasonic root-end preparation: Influence of cutting angle on the apical seal J Endod 726 30 20 Gilheany PA Figdor D Tvas MJ Apical dentin permeability and microleakage associated with root end resection and retrograde fillingJ Endod 22 6 21 Roghanizad N Fekrazad R Kalhori KA Khalilak Z Esmaeili MA de Fatima Zanirato Lizarelli R A comparison of Er, Cr: YSGG laser with ultrasonic preparation on the seal of retrograde cavitiesLaser Ther 33 7 22 Zuolo ML Perin FR Ferreira MO de Faria FP Ultrasonic root-end preparation with smooth and diamond-coated tipsEndod Dent Traumatol 265 8 23 Layton CA Marshall JG Morgan LA Baumgartner JC Evaluation of cracks associated with ultrasonic root-end preparationJ Endod 157 60 24 Nowicka A Lipski M Parafiniuk M Sporniak-Tutak K Lichota D Kosierkiewicz A Response of human dental pulp capped with biodentine and mineral trioxide aggregateJ Endod 743 7 25 Katsamakis S Slot DE Van der Sluis LW Van der Weijden F Histological responses of the periodontium to MTA: A systematic reviewJ Clin Periodontol 334 44 26 Gomma MM Samy IS Farag MM Elinein NA Vibration pattern of different endosonic instrumentsEgypt Dent J 131 7 27