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A B S T R A C T   

The prevalence of SARS-CoV-2-induced respiratory infections is now a major challenge worldwide. There is 
currently no specific antiviral drug to prevent or treat this disease. Infection with COVID-19 seriously needs to 
find effective therapeutic agents. In the present study, naringenin, as a potential inhibitor candidate for RNA 
Polymerase SARS-CoV-2 was compared with remdesivir (FDA-approved drug) and GS-441,524 (Derivative of the 
drug remdesivir) by screening with wild-type and mutant SARS-CoV-2 NSP12 (NSP7-NSP8) and NSP3 interfaces, 
then complexes were simulated by molecular dynamics (MD) simulations to gain their stabilities. The docking 
results displayed scores of -3.45 kcal/mol and -4.32 kcal/mol against NSP12 and NSP3, respectively. Our results 
showed that naringenin had ΔG values more negative than the ΔG values of Remdesivir (RDV) and GS-441,524. 
Hence, naringenin was considered to be a potential inhibitor. Also, the number of hydrogen bonds of naringenin 
with NSP3 and later NSP12 are more than Remdesivir and its derivative. In this research, Mean root mean square 
deviation (RMSD) values of NSP3 and NSP12with naringenin ligand (5.55±1.58 nm to 3.45±0.56 nm and 0.238 
±0.01 to 0.242±0.021 nm, respectively showed stability in the presence of ligand. The root mean square fluc-
tuations (RMSF) values of NSP3 and NSP12 amino acid units in the presence of naringenin in were 1.5 ± 0.31 nm 
and 0.118±0.058, respectively. Pharmacokinetic properties and prediction of absorption, distribution, meta-
bolism, excretion, and toxicity (ADMET) properties of naringenin and RDV showed that these two compounds 
had no potential cytotoxicity.   
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1. Introduction 

In December 2019, a new coronavirus called the 2019 novel coro-
navirus (2019-nCoV) or the severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2), caused the onset of pneumonia from China’s 
Wuhan Seafood Market, which spread across China [1,2]. The binding of 
coronaviruses to specific receptors at the level of host cells is one of the 
most important determinants of prevalence, pathology and the range of 
host diversity for the virus [3,4]. These receptors are also one of the most 
crucial targets for developing antiviral drugs and vaccines [5,6]. There is 
currently no specific treatment for SARS-CoV-2 infection, so the dis-
covery of new drugs for the treatment of COVID-19 has great impor-
tance. The measurements were limited to generate preventive and 
supportive treatments [7]. Various strategies have been adopted around 
the world to develop effective drugs for the treatment and prevention of 
disease progression in patients with COVID-19 [8–11]. Some pre-
liminary studies which applied antiviral drugs in two emerging epidemic 
coronavirus diseases Middle East Respiratory Syndrome (MERS) and 
Severe acute respiratory syndrome (SARS) were the basis of some novel 
studies on SARS-CoV-2 disease. These studies investigated some anti-
viral therapies that critically blocked human CoVs pathogenic processes 
viz. neuraminidase inhibitors, nucleoside analogues, and remdesivir 
[12,13]. The viral genome replication is one of the most crucial pro-
cesses in the life cycle of SARS-CoV-2, which polymerizes RNA and 
employs variety of viruses and host proteins [14]. SARS, MERS, and 
SARS-CoV-2, have 16 non-structural proteins (NSPs), which are encoded 
by 1a and 1b open reading frames (ORF 1a/1b) [15]. NSPs are conserved 
in the replication and transcription of various coronaviruses [16–18]. 
One of the preserved NSP in coronaviruses is NSP 12 which has a 
“cupped right hand “structure. NSP12 subdomains include finger, palm, 
thumb, and N-terminal domains, with a total length of 932 amino acids 
[19–23]. The NSP12 N-terminal domain is a nucleotidyltransferase 
(NiRAN). This domain is associated with the Nidovirales RNA-dependent 
RNA polymerase (RdR)performance [20], and so SARS-CoV Viral 
growth is dependent on the NiRAN domain [14]. Some studies have 
proved that the NiRAN domain of SARS-CoV-2 Nsp12 displays structural 
features of kinase-like folds [14,20]. The structural analysis of NSP8 

showed that it formed a complex with NSP7 during its primer-dependent 
RdR activity [24–26]. NSP7 and NSP8 are identified as SARS-CoV NSP12 
adjuncts that form an essential complex for SARS-CoV replication and 
stimulate the polymerase activity of NSP12[20,25]. NSP12 binds to 
NSP7 and NSP8 and produces a kinase-like folding of SARS-CoV [20] 
(Fig.1). Phenolic compounds establish one of the significant classes of 
auxiliary metabolites in plants. Flavonoids are the main phenolic com-
pounds contained in natural medicines [27–29]. One of the flavanones is 
Naringinin, the aglycone of Naringin, which is mainly contained in 
Citrus species with numerous pharmacological activities (Fig.2). Nar-
ingenin bioactive effects on humans consists of antioxidant, free radical 
scavenger, anti-inflammatory, carbohydrate metabolism promoter, and 
immune system modulator [30,31] (Fig.2). In the present study, nar-
ingenin was selected as a potential inhibitor candidate for RNA Poly-
merase SARS-CoV-2 and it’s in silico effect compared with remdesivir 
and GS-441,524. 

2. Results and discussion 

2.1. Molecular docking 

In this study, naringenin flavonoid, RDV, and GS-441,524 obtained 
from Pubchem databases were virtually screened against the SARS-CoV- 
2 RNA-dependent RNA polymerase (NSP12) and SARS-CoV-2 macro-
domain RNA polymerase (NSP3). AutoDock results represent the dock-
ing scores as Gibbs free energy of binding (ΔG (kcal/mol). The docking 
scores of naringenin flavonoid, Remdesivir, and GS-441,524 against 
both NSP12 and NSP3 are provided in (Table 1). The control drug 
molecule RDV was shown to gain docking scores of − 3.45 kcal/mol and 
− 4.32 kcal/mol against NSP12 and NSP3, respectively. The dissociation 
constant for protein-ligand binding (EIC or estimated inhibition con-
stant) was calculated for all studied compounds and RDV and the data 
are presented in (Table 1). Compared to RDV, naringenin showed lower 
EIC values, with 131.52 µM and 2.99 µM for NSP12 and NSP3, respec-
tively. (Table 2) shows how the studied compounds interact with NSP12 
and NSP3. The current investigation focused on the primary RNA Po-
lymerase SARS-CoV-2, particularly NSP12 (NSP7, 8) and NSP3, as 

Fig. 1. Structure of complex SARS-CoV NSP12 bound to NSP7 and NSP8 co-factors: A Diagram of the SARS-CoV NSP7, 8, and 12 proteins, including conserved 
motifs, and the protein regions. A. The Metabolism pathway of remdesivir (prodrug) conversion into GS-441,524 (metabloite),. B. Structures of ATP, ADP, and AMP- 
like (size) compounds also display. We observe that the structures of AMP (complex of NSP3) and GS-441,524 monophosphate (complex of NSP12) are highly similar. 
The size of ADP-ribose (complex of NSP3) and the GS-441,524- triphosphate are resembles. 
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potential objective proteins for COVID-19 treatment. The disclosure of 
the RNA Polymerase structure in COVID-19 gives an incredible chance 
to recognize potential medication contenders for treatment. The anti-
viral impacts of Remdesivir against CoV have been concentrated “in 
vitro”, in cells contaminated with SARS-CoV [32,33]. 

Recently, the crystal structure of GS441524 monophosphate, NSP12 
8 and NSP7 of SARS-CoV-2 virus has been reported. By analyzing the 
crystal structure of NSP7,8 and 12, we found that the main interaction of 
the metabolite Remdesivir (GS441524 monophosphate) is with NSP12. 
This binding site overlap was seen using two available NSP7,8 and 12 
crystal structures. Naringenin as a potential inhibitor of the SARS-CoV-2 
RNA Polymerase was investigated. In an in silico analysis study, the 
compound have illustrated a similar pharmacophore to Nelfinavir. 
AutoDock software version 4.2 was used to investigate molecular 
interaction. As indicated by AutoDock results, the control drug molecule 
RDV was shown to have docking scores of − 3.45 kcal/mol and − 4.32 

kcal/mol against NSP12 and NSP3, respectively. Also, naringenin had 
ΔG values more than the ΔG values RDV and GS-441,524; hence, nar-
ingenin was considered a potential inhibitor. Based on docking studies, 
El-Aziz et al. [34]. that showed several compounds on the 6M71 struc-
ture, respectively, RDV, gallic acid, quercetin, caffeine, ribavirin, 
resveratrol, naringenin, benzoic acid, oleuropein, and Ellagic acid have 
the highest binding energy to NSP12. Moreover, naringenin showed 
binding energy of − 5.69 (kcal/mol), indicating that docking with higher 
execution times achieves more accurate results. In the study of El-Aziz 
et al., naringenin bound with the amino acids Arg553, Arg555, Ser686 
and Thr556 [34]. However, our results exhibited that naringenin binds 
with (C-chain) amino acids Gln31 and Ser60 of NSP12 and with binding 
energy of 7.54 and (C-chain) with amino acids Leu126, Ala129, Ser128 
and Asn40 in NSP3. The naringenin connection to NSP3 was more robust 
than the NSP12 and needs to be tested with different software. Also, in 
the El-Aziz study, RDV reported − 8.51 (Kcal/ mol) binding energy with 

Fig. 2. Naringenin biosynthesis: Naringenin is a citrus flavonoid chemically named as 2,3-dihydro-5,7-dihydroxy-2-(4 hydroxyphenyl)− 4H-1-benzopyran-4-one. 
Naringenin distributed molecules are insoluble in water and are soluble in organic solvents, like alcohol. According to the flavonoids class, naringenin is classified as 
a flavanone, which derives from naringin or narirutin (its glycone precursor) hydrolysis. In fact, Naringenin occupies a central position as primary C15 intermediate in 
the flavonoid biosynthesis pathway. Overall, the metabolic pathway begains with phenylalanine ammonia-lysase (PAL). Naringenin is produced by the combination 
of the para-coumaroyl-CoA with three units of malonyl-CoA. Subsequently, para-coumaroyl-CoA is activated by CoA-dependent ligase in the universal phenyl-
propanoid pathway. 

Table 1 
Docking results in the form of naringenin Binding Affinity used in silico screening against SARS-CoV-2 RNA-dependent RNA polymerase (NSP12) and SARS-CoV-2 
macrodomain RNA polymerase (NSP3) (AutoDock scores are in kcal/mol).  

Receptor/ 
Protein 

Ligand- 
receptor 

BE 
kcal/ 
mol 

FIE 
kcal/ 
mol 

EIC 
µM 

Interaction bonds 
Hydrogen Bonding  Hydrophobic Binding Other Binding 

NSP12 Naringenin -5.29 -6.49 131.52 
µM 

Gln(C)31, Ser(C)60 Ile(D)119, Met(C)62, Pro(D)116, Asn(D)118, Gln(C)63, 
Val(D)115 

Leu(C)28, Val 
(C)58 

GS-441524 -4.81 -6.60 300.11 
µM 

Cys(A)395, Asp(A)395, Asp(A) 
390, Ser(A)397, Lys(A)391 

Tyr(B)149, Leu(A)388, Leu(A)389, Phe(A)396, Thr(A) 
393, Thr(A)394  

Remdesivir -3.45 -8.52 2.98 mM Gly(A)852 Ile(A)856, Leu(A)891, Thr(A)853, Thr(A)850, Lys(A)849 Leu(A)895, 
Asp(A)851 

NSP3 Naringenin -7.54 -8.73 2.99 µM Leu(C)126, Ala(C)129, Ser(C) 
128, Asn(C)40 

Phe(B)156, Val(B)449, Gly(B)48, Gly(B)46, Phe(B)132, 
Ala(B)39, Ala(B)38, Leu(B)127, Pro(B)125, Gly(B)130 

Ile(B)131 

GS-441524 -6.15 -7.93 31.31 
µM 

Asp(C)22, Leu(C)126, Phe(C) 
156 

Ala(C)129, Gly(C)130, Val(C)24, Ala(C)52, Gly(C)48, Pro 
(C)125, Ala(C)154, Val(C)155, Asp(C)157, Leu(C)160 

Ile(C)23, Val 
(C)49 

Remdesivir -4.32 -9.39 677.31 
µM 

Asn(D)59, His(D)45 Asn(D)54, Gln(D)62, Tyr(D)42, Asp(D)66  Lys(D)44 

Abbreviations: BE; Estimated Free Energy of binding (kcal/mol), FIE; final intermolecular energy (kcal/mol), EIC; estimated inhibition constant (μM/mM). 
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Table 2 
Nonbonding interactions of naringenin with SARS-CoV-2 macrodomain RNA polymerase (NSP3) and SARS-CoV-2 RNA-dependent RNA polymerase (NSP12) (pose 
predicted by AutoDock and visualized by Discovery studio visualizer).  

Protein Ligand H bond Interaction 2D Interaction 

NSP3  Naringenin 

GS-441524  

Remdesivir 

NSP12  Naringenin 

(continued on next page) 
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amino acids Asn691, Cys622 and Lys621, Tyr619, Thr680 and Thr687 
residues [34]. Although, our results displayed that Gly852 forms a 
hydrogen bond, and with a binding energy of − 3.45 (Kcal / mol). RDV 
(Gs-5734) a prodrug of the adenosine monophosphate analog Gs-441, 
524, was initially developed due to its strong antiviral activity in vitro 
to fight the Ebola virus [35]. Biochemical studies have shown that RDV, 
similar to natural nucleoside, combines in RNA formation in the pres-
ence of virus RNA-dependent RNA polymerase (RdR), but this does not 
occur for human DNA or RNA-dependent RNA polymerases [36–39]. 
The present study also showed that naringenin could inhibit NSP12 and 
significantly inhibit NSP3. The amino acids Lys545, Arg555 and Asn91 
of COVID-19 RNA polymerase are predicted to be involved in the 
interaction [40]. 

Zhang et al., demonstrated the first RemTp (RDV active form) in-
teractions with a mutated NSP12 that registered with the 6NUR PDB 
code [41]. They determined the main position of RDV active form, 
communicating with the positive charges of the amino acid units 
Lys798, Lys621, Arg555, Arg553, Lys551, and Arg836, which was also 
edenosine triphosphate (ATP) portion. RDV blocked the main function 
of the NSP12, 8 and NSP7 polymerase complexes [41]. Also, since other 
articles have reported RemTp binding to Asp618, there are more in-
teractions that require investigation in further study [42]. When Tha-
zolone derivatives VXR (VXR) bound to NSP12 with the binding energy 
of − 23.23 kcal/mol. These hydrogen bonds engaged amino acids 
Gly591, Gly590 and Lys593. Furthermore, Val588, Leu589, Ser592, 
Phe593, Trp598, Met601, Met756, Leu758, Phe812, Cys813, Ile864 and 
Asp865 residues made hydrophobic bonding. 

In NSP7/NSP8/NSP12-VXR complexes with binding energy of 7–8 
kcal/mol generated hydrogen bonds with Gly90, Thr591 and Lys593 
residues. VXR also established hydrophobic bonding with amino acids 
Val588, Leu589, Ser592, Lys593, Phe5, Met601, Met756, Leu758, 
Phe812, Cys813, Ile869 and Asp865 [43]. These findings are robustly 
confirmed by similar form of ligand-protein interaction in presented 

study. Our outcomes further proved the importance of the aforemen-
tioned residues in the targeting of the RdR. 

3. Molecular dynamic (MD) simulation 

Based on parameter simulation as described in (Table 3), we 
conclude that the structural dynamics and flexibility of NSP3 protein 
decreased in the presence of naringenin ligand. Furthermore, ligand-free 
NSP3 was more flexible, which could be related to the ligand coordi-
nation mode. Based on (Table 4) information, naringenin has strong 
interaction with NSP3 protein and, therefore, can be considered a po-
tential medicine for COVID-19. 

3.1. Root mean-square deviation (RMSD) 

Fig.3A depicts the changes in the RMSD in the simulation of NSP3, 
alone (Blue graph), and its complexes with naringenin (red graph), at 50 
ns simulation time. Although oscillation and instability were observed at 
the beginning of the simulation time, the system reached a steady state 
after 30 ns, and the amount of RMSD fluctuations decreased. As shown 
in (Fig.3), the last 30 ns of MD simulation trajectories were used to 
calculate average RMSD that decreased for the NSP3 in complex with 
naringenin (5.55±1.58 to 3.45±0.56 value) during simulation time. 
Here, ligand free NSP3 and NSP3-naringenin complexes RMSD values 
5.55±1.58 nm and 3.45± 0.56 nm, respectively, that showed stability, 
especially in the presence of ligand. In fact, in the first five ns of dynamic 
simulation, the NSP3 RMSD values increased to 10 nm and then stabi-
lized between 0.5 to 1 nm, indicating that naringenin perfectly blocked 
NSP3. Elkarhat et al. (2020), Showed that STDs and VXRs also reduce 
RMSD levels [43]. The RMSD plot for NSP12 displayed that naringinin 
had neglegible impact on the stability of NSP12. The average of the 
RMSD support that naringinin had not considerable impact to generate a 
stable complex (Fig.3B and Table3). 

Table 2 (continued ) 

Protein Ligand H bond Interaction 2D Interaction 

GS-441524 

Remdesivir 
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3.2. Root mean square fluctuation (RMSF) 

Fig.4 shows the rate of RMSF changes for each of the amino acid of 
the protease protein alone (Blue graph) and the NSP3 docked with the 
naringenin (red graph) throughout 50 nanoseconds. The most signifi-
cant reduction in RMSF fluctuations occurred in naringenin-docked 
protein. The inhibitory effects of naringenin on the fluctuations of pro-
tease residues demonstrated that naringenin could inhibit amino acid 
residues of 150–170, 220–250 and 410–420, as well as 610 amino acid 
residues in the NSP3. 

The RMSF values of NSP3 amino acid units in the presence of nar-
ingenin in NM were 1.5 ± 0.31, but when ligand-free NSP3 was simu-
lated, the RMSF was 3.14±0.45 nm. NSP3 RMSF fluctuated between 4.4 
and 2 nm, but in NSP3-naringenin complex fluctuated between 2.4 and 
0.8 nm . C-chain flexibility, which includes amino acids of 343 to 514, 
had the most fluctuations (amino acids 410 to 430), indicating C-chain 
flexibility played an essential role in NSP3 flexibility. The A chain res-
idues in NSP3 had the least flexibility and the lowest amplitude of RMSF 
fluctuations 1.2 to 2 nm. Against RMSD, the RMSF changes for NSP12 
exhibited that the residues fluctuation relatively decreased, however the 
fluctuation changes was not remarkable. The RMSF results indicated 
that naringenin could bind to the active site of COVID-19 RNA poly-
merase. The RMSF values of NSP12 residues in NSP12-naringinin com-
plex were decreased than ligand free NSP12. 

3.3. The radius of gyration (Rg) 

Fig.5 describes the rate of radius of gyration (Rg) alterations of 
protease protein alone (Blue graph) and NSP3-naringenin complex (red 
graph) throughout 50 nanoseconds from the simulation time. (Fig.5A), 
reveals an oscillation in the Rg rate during the simulation time. Limi-
tation in the Rg rate demonstrated that distribution of the protein atom 
around its axis is diminished, accordingly the protein is stabilized in the 
presence of ligand. However, the mean rotational radius for the duct 
proteins with naringenin decreases during the simulation time. The 
changes in the Rg NSP3 was 6.73±0.87 nm (ranging between 5 and 8 
nm), and when the protein was accompanied by naringenin, this value 
decreased to 4.95±0.36 nm. (Fig.5B), exhibit acceptable stability for 
NSP12-naringenin complex. The Rg value for ligand free NSP12 and 
NSP12-naringenin complex were close. The average of the Rg for NSP12- 
nariniginin in Table 3 displays slight fluctuation along with simulation 

time, suggesting proper folding of the protein. 

3.4. Hydrogen bonds (H-bound) 

Fig.6 demonstrates the rate of alterations in hydrogen bonds of 
protease protein(Blue graph), and NSP3-naringenin (red graph), over 50 
nanoseconds of the simulation time. Accordingly, (Fig.6) shows that 
during the simulation time, a slight decrease in hydrogen bonds was 
induced in the docked protein to naringenin compared (496±13) to the 
protein alone (498±10). The number of hydrogen bonds among intra- 
structure of NSP3, and inter-structure of NSP3-naringeninduring simu-
lation time equals 498±11 and 1109±25, respectively. In NSP3- 
naringenin complex hydrogen bond values between intra-structure of 
NSP3 and protein-solvent gained 496±13, and 1105±35 nm, respec-
tively. These outcomes demonstrated that the number of hydrogen 
bonds within NSP3 protein and protein-solvent did not change much. 

3.5. Secondary structure 

Fig.7 demonstrates the rate of alterations in the secondary structures 
of the free ligand NSP3 protein (Blue graph), and the NSP3-naringenin 
complexes (naringenin diagram), after 50 nanoseconds of the simula-
tion time. Docked naringenin in NSP3 protein causes a augmentation in 
the β-Bridge structure (7.75±3.18) and β-sheet to 127.24±6.63. How-
ever, Coil, Turn and Bend, Helix structures were decreased. The 
augmentation in the β-Bridge, β-sheet structures percent and reduction 
in the Coil, Turn and Bend structures exhibited that protein robustly 
stabilized in the presence of ligand. All MD simulation outcomes proved 
that so naringenin made a stable and robust complex. 

Phosphates functional group showed a higher interaction than pro-
drug and other intermediate metabolites in the RMSF, RMSD and Rg 
analysis on the structure of RdR [44]. The study of Celik et al. [44]., 
using a molecular dynamics approach has indicated that the antiviral 
drugs favipiravir, remdesivir, galidesivir, and ribavirin prevented virus 
replication by inhibiting virus RNA-dependent RNA polymerase. MD 
outcomes of this study also report strong and stabilized bonds among 
NSP3-naringenin. 

Table 3 
The average and standard deviations of Rg, Area per residue, RMSD, RMSF, H-bond between protein-protein H-bond between protein-solvation (number) and NSP3 
protein with naringenin.  

Name RMSD 
(nm)  

Rg (nm)  RMSF (nm) Area per residue (ASA) 
(nm) 

H-bond between protein-protein 
(number) 

H-bond between protein-solvation 
(number) 

NSP3-Water 5.55±1.58 6.73 
±0.87 

3.14±0.45 0.55±0.10 498±11 1109±25 

NSP3-Naringenin 3.45±0.56 4.95 
±0.36 

1.50±0.31 0.55±0.10 496±13 1105±35 

NSP12-Water 0.23±0.01 3.58 
±0.03 

0.129 
±0.064 

0.62±1.44 800±20 1350±20 

NSP12-N 
aringenin 

0.24 
±0.021 

3.59 
±0.01 

0.118 
±0.058 

0.62±1.44 799±14 1350±15 

ave±SD 

Table 4 
The average values and standard deviations of temperature (K) of kinetic (EKCMT) and potential (EPTOT) and total (ETOT) energies (kJ/mol), Volume (nm3) and 
Density (kg/m3).  

Name EPTOT 
(KJ/mol) 

EKCMT 
(kJ/mol) 

ETOT 
(kJ/mol) 

Temperature (K) Volume 
(nm3) 

Density 
(kg/m3) 

Water -1977032±1674.92 364359.8±1099.48 -1612672±1569.02 299.91±0.90 1486.43±2.04 1001.04±1.37 
Naringenin -1980084±35144.44 364487.4±1057.66 -1615597±35117.86 299.93±0.87 1486.61±7.11 1001.26±5.02  
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4. Physiochemical, pharmacokinetic, and ADMET properties of 
naringenin 

Pharmacokinetic properties and prediction of ADMET properties of 
naringenin and RDV were calculated using PKCSM web tool. The results 
of toxicity prediction and physicochemical properties are shown in 
(Table 5). The results showed that the two compounds had no significant 
potential cytotoxicity effect. Naringenin had less brain damage than 
RDV and had high digestive absorption. Naringenin has slightly more 
solubility than RDV, but this difference may not be significant. The 
AMES toxicity for naringenin was positive, thus this compound had 
potential mutagenicity effect. Howevere, based on the some clinical 
study, Naringinin has not any mutagenic, teratogenic and carcinogenic 
effect with daily ingestion of 150 to 900 mg doses. Thus, Nariginin can 

used for clinical study with daily dose of 900 mg [45]. 
The penetration, distribution of RDV are higher than that of nar-

ingenin. Both compounds have CYP induction and P-gp compatibility. 
The PSA of the RDV drug is greater than 140, which means has strong 
polarity and therefore is not easily absorbed by the body. But PSA is 
86.99 for naringenin, so it is easily absorbed. Two compounds (nar-
ingenin and RDV) have good membrane thermal absorption or perme-
ability, because log P was less than 5. logBB demonstrated that 
compounds would not cross the blood-brain barrier. Cytochrome P450 
(CYP) is a vital enzyme system for drug metabolism in the liver. In 
contrast to naringenin, RDV is a substrate for CYP3A4. naringenin was a 
CYP3A4 inhibitor, while RDV did not. Thus, naringenin is metabolized 
in the liver. The hERG (the human Ether-à-go-go-Related Gene) is po-
tassium ion channel, and essential for normal electrical activity in the 

Fig. 3. Changes in the Root mean square deviation (RMSD) during 50 nanoseconds simulation time. A. the blue curve correspond to the RMSD of protein alone 
(Water) and the red curve correspond to the RMSD of protein-ligands (naringenin). B. The blue curve display ligand free NSP12 RMSD and the orange curve present 
the NSP12-naringinin complex RMSD. 
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heart. These two compounds did not inhibit the hERG 1 channel and 
inhibited hERG 2, however, on the clinical trial studies, did not show the 
inhibitory cardiac effects with daily ingestion of 150 to 900 mg doses 
Naringinin [31]. 

Some reports show flavonoids have several biological functions 
against some viruses [46]. Some tests have been done to evaluate the 
antiviral function of the flavanone naringenin versus some types of vi-
ruses, including HCV, Chikungunya virus (CHIKV), Dengue virus 
(DENV), and Zika virus (ZIKV) [47]. Also, it was shown that using 
naringenin led to the silencing of the apoB mRNA in the infected cells 
and reduced 70% release of both apoB100 and HCV [48]. Another study 
showed that naringenin administration could inhibit ZIKV infection in 
human A549 cells in a concentration-dependent manner. As the primary 
human monocyte-derived dendritic cells were cured after infection, the 
antiviral function of naringenin was also uncovered. Consequently, this 
result indicates that naringenin can reduce viral reproduction or as-
sembly of viral elements. Also, an interaction among the protease 
domain of the NS2B-NS3 protein of ZIKV and naringenin can describe 
the anti-ZIKV function of this compound [46]. 

Five important pharmacokinetic parameters including absorption, 
distribution, metabolism, excretion, and toxicity (ADMET) are impor-
tant factors in converting a designed compound into a suitable drug 
candidate [30,49]. Naringenin could only act as P-gp substrates, which 
reduces its clinical effect. Drug concentration at the site of drug uptake is 
affected by many factors, including lipid solubility, plasma concentra-
tion, and the ability to bind to plasma and transport proteins [33,50]. 

There is a relationship between chemical structures and physico-
chemical properties, Therefore, chemical descriptors can be used to 
calculate pharmacokinetic properties. Polar Surface Area (PSA) is a su-
perficial descriptor used to measure drug permeability. It is defined as 
part of the surface area created by nitrogen, oxygen, and the hydrogen 
atoms attached to them [51]. Brain-blood partition coefficient (LogBB) 
shows the rate at which molecules cross the blood-brain barrier. In 
addition, evaluation of the risk parameters of toxicity and medicinal 
properties of the designed compounds showed that naringenin had no 
risk tumorigenesis, inflammatory effects and toxic effects (Table 6). In 
general, it can be concluded that perhaps naringenin is in an acceptable 
range in terms of toxicity and medicinal properties, considering this 

Fig. 4. Changes in Root mean square fluctuation (RMSF) during 50 nanoseconds simulation time. A. the blue curve correspond to the RMSF of protein alone (Water) 
and the red curve correspond to the RMSF of protein-ligands (naringenin). B. RMSF analyses of naringinin-NSP12 complex. The blue curve display ligand free NSP12 
RMSF and the orange curve present the NSP12-naringinin complex RMSF. 
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compound a valid drug. ADMET results displayed that, because of the 
low bioavailability and quick metabolism, accordingly deletion of 
almost all flavonoids such as naringenin. Therefore maybe, there is less 
possibility of adverse effects reported by using them [52]. Also, the 
outcomes showed no adverse effects in a clinical study across the healthy 
overweight subjects that evaluated the efficacy and safety of poly-
phenolic citrus dry extract such as naringenin [53]. Nevertheless, since 
there is not enough evidence on the safety and toxicity of naringenin, 
utilizing this flavanone in clinical trials on SARS-CoV-2 must be planned 
cautiously [54]. 

5. Materials and methods 

Remdesivir (RDV) was introduced as an antiviral drug and an in-
hibitor of RNA-dependent RNA polymerase. In this study, Molecular 
Docking was used to determine the behavior of RDV drug and its 
metabolic derivatives (GS-441,524) with two structures, including 
SARS-CoV-2 RNA dependent RNA polymerase (NSP12) and SARS-CoV-2 
macrodomain RNA polymerase (NSP3). Naringenin was also chosen for 
this study due to its profound bioactive impact, including antioxidant, 
free radical scavenger, anti-inflammatory, carbohydrate metabolism 
promoter, and immune system modulator. The molecular dynamics 
behavior of NSP3 in the presence of naringenin compound was 

Fig. 5. Changes in the Radius of gyration (Rg) during 50 nanoseconds simulation time. (A) The Blue curve corresponds to Rg of protein (NSP3) alone (Water) and the 
red curve correspond to the Rg of protein-naringenin). (B) The blue curve display ligand free NSP1 Rg and the orange curve present the NSP12-naringinin com-
plex Rg. 
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investigated with GROMACS 2018.1 software (Table 6). 

5.1. Protein retrieval and preparation 

The protein data bank (PDB) file of RNA-dependent RNA polymerase 

(NSP12) (PDB ID: 6M71) and SARS-CoV-2 macrodomain RNA poly-
merase (NSP3) (PDB ID: 6WOJ) were obtained from the protein data 
bank server (www.rcsb.org). Subsequently, the hydrogen atoms were 
added in pH=7 and water molecules were omitted, using Discovery 
Studio software 2.5 (DS, Accerlys Inc, San Diego) [55,56]. Energy 

Fig. 6. Changes in the number of hydrogen bonds during 50 nanoseconds simulation time. Naringenin and NSP-3. The Blue curve correspond to the number of 
hydrogen bonds of protein alone (Water) and the red curve correspond to the number of hydrogen bonds of a protein–ligands complex. 

Fig. 7. Changes in the secondary structures during 50 nanoseconds simulation time. The orange, and blue rows display water and naringenin, respectively.  
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minimization was performed till energy gradient fell in 0.1 calÅ− 1 by 
Discovery Studio and Swiss-PdbViewer (aka DeepView). 

5.2. Positive control and preparation of ligand structure 

Four RDV forms, were selected as positive controls for the execution 
of blind docking. Their structure was also acquired in PDB format from 
the https://go.drugbank.com/ website. The three-dimensional structure 
(PDB) of all three ligands (RDV, naringenin and GS-441,524) was 
downloaded from the PubChem server (https://pubchem.ncbi.nlm.nih. 
gov/). Ligands were finally minimized with the Gasteiger charges by 
Chimera 1.13.1 software [57]. 

5.3. Molecular docking 

The molecular docking study was performed using AutoDock soft-
ware version 4.2 [58]. The above-mentioned ligands were docked on the 
NSP12 and NSP3 COVID-19 as receptors to determine the ligand’s most 
stable free energy state. In the current study, a grid box with dimensions 
of 60 × 120 × 90 (x × y × z) with default AutoDock grid spacing of 
0.375 Å was created to dock ligands in receptor. The Genetic Algorithm 
and Lamarckian GA parameters with maximum number of generations 
simulated during each GA or LGA run=27,000 and maximum number of 
energy evaluations performed during each GA, LGA, or LS run=25,000, 
00.The AutoDock4 version Linux was used to generate the results file 
(dlg). The obtained data from the dlg file was analyzed [58]. The esti-
mated inhibition constant (Kiex) is Computed by the equation [59]. 

Kiex = exp[(ΔGex×1000 /RT)]

ΔGex is a semiempirical free energy approximation (derived from 
molecular mechanics and experimental parameters), R is 1.98719 cal.K 
− 1.mol− 1, and T is 298.15 K [59]. Discovery Studio Visualizer software 
was used to specify the number of hydrophobic and hydrogen bonds 
between the receptors with each ligand. Furthermore, the type and 
number of existing amino acids in the binding site were determined 
[60]. 

5.4. Molecular dynamics simulations 

Molecular dynamics is a computer simulation of the atoms’ and 
molecules’ physical movements over a period of time. During this 

Table 5 
Predicted ADMET properties of naringenin and Remdesivir.  

Properties Naringenin Remdesivir 

Polar Surface Area (PSA) 86.99 213.36 
LogP 1.84 1.53 
Synthetic accessibility 3.01 6.33 
Water solubility (log mol/L) -3.278 -3.089 
Caco2 per. (log Papp in 10-6 cm/s) 1.166 0.577 
Intestinal ab (human) (% Absorbed) 90.508 64.198 
Skin Permeability (log Kp) -3.225 -2.735 
P-gp substrate Yes Yes 
P-gp I inhibitor No Yes 
P-gp II inhibitor No Yes 
VDss (human) (log L/kg) -0.029 0.984 
Fraction unbound (human) (Fu) 0.18 0.088 
BBB permeability (log BB) -0.969 -2.005 
CNS permeability (log PS) -2.236 -4.115 
(log ml/min/kg) No No 
CYP3A4 substrate No Yes 
CYP1A2 inhibitor Yes No 
CYP2C19 inhibitor No No 
CYP2C9 inhibitor No No 
CYP2D6 inhibitor No No 
CYP3A4 inhibitor Yes No 
Total Clearance (log ml/min/kg) 0.068 0.184 
Renal OCT2 substrate No No 
AMES toxicity Yes No 
MTD @ (log mg/kg/day) 0.402 -0.164 
hERG 1 inhibitor No No 
hERG 2 inhibitor Yes Yes 
ORT* (mol/kg) 2.189 2.027 
ORCT# (log mg/kg_bw/day) 1.994 2.677 
HEP$ No Yes 
SS^ No No 
TPTþ (log ug/L) 0.69 0.285 
Minnow toxicity (log mM) 0.616 1.112 
Molecular Weight 272.25 602.58 

Synthetic accessibility range (0-10) = very easy to very difficult to synthesize; 
*P-gp- P -glycoprotein; @MTD-Max. tolerated dose (human); *ORT-Oral Rat 
Acute Toxicity (LD50); #ORCT- Oral Rat Chronic Toxicity (LOAEL); HEP 
$-Hepatotoxicity; ^SS-Skin Sensitization; +TPT-Pyriformis toxicity. 

Table 6 
Ingredients of naringenin compound used for in silico screening against proteins of SARS-CoV-2 RNA polymerase  

Sr. No Ligand Molecular Formula Molar mass (g/mol) PubChem CID Structure 

1 Naringenin C15H12O5 272.257  932 

2 Remdesivir C27H35N6O8P  602.58 121304016 
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period, the motion of atoms would be investigated. In most molecular 
dynamics simulations, the system’s initial conditions are far from 
equilibrium. Therefore, the first simulation step in molecular dynamics 
must be done at equilibrium time for the system to reach the equilibrium 
state. While equilibrium is gained, the thermodynamic and structural 
properties of the compound are controlled until it finally reaches sta-
bility level. In this research, molecular dynamics simulation of the 
studied complex was conducted, using GROMACS 2018.1 software at 
constant pressure and temperature (NPT) [61]. All the proteins topol-
ogies were generated from the G43a1 force field. The ITP and gro ligand 
files were created from the PRODRG database [62]. All complexes were 
solvated with the extended simple point charge (SPC216) water model 
in a cubic box of 1.0 nm distance from the protein to the surface under 
periodic boundary conditions box. Sodium and chloride ions were 
injected to neutralize each system, then the steepest descent integrator 
technique was used to minimize energy. Following that, the constant 
temperature of 300 K for 100 ps and 1 bar pressure were applied to 
equilibrate the systems. For the simulations, the isotropic Monte Carlo 
(MC) barostat and the Nose Hoover thermostat were used to maintain 
the pressure at 1 atm. Lennard-Jones potential and Particle Mesh Ewald 
(PME) calculations were performed to handle Van der Waals and elec-
trostatic interactions, respectively. Finally, 50 Nanoseconds (ns) MD 
simulation run with 1fs time step were done on each complex. The 2D 
plots representing the intrinsic dynamical stabilities of the complex such 
as RMSD, RMSF, Rg, and hydrogen bond interactions between the pro-
tein and compound were generated [63]. 

5.5. Physiochemical, pharmacokinetic, and ADMET properties of 
naringenin 

The crucial criteria consisting of physicochemical qualities, non- 
toxicity, and pharmacological effectiveness computations were per-
formed to select a molecule as a therapeutic candidate. Therefore, in the 
present study, physicochemical properties of RDV and naringenin were 
predicted, including water solubility, polarization rate (TPSA), diffusion 
(logD) and metabolism. The inhibitory effect of compounds on phase I 
metabolism enzymes, including CYP1A2, CYP2C19, CYP2C9, CYP3A4 
and CYP2D6 were investigated by the SwissADME server (www.swi 
ssadme.ch) [64]. This server provides the possibility of predicting 
physicochemical properties and cytotoxicity by receiving information 
on chemical molecules in the form of mol or SMILE file. In addition, the 
mutagenic potential of the studied compounds was predicted by Tox-
tree.2.6 software [65]. 

6. Conclusion 

The affinity of naringenin bonds is higher compared with remdesivir. 
Naringenin with connection to NSP3 can stabilize it and could inhibit it. 
Therefore, we suggested that naringenin may represent potential treat-
ment options. However, further research is necessary to investigate the 
potential uses of medicinal plants containing these compounds. The 
approach of developing a drug through naringenin with its NSP binding 
sites is a promising choice to treat modified SARS-CoV-2 viruses. But 
further “in vitro” and “in vivo” experiments should be performed to 
reveal these interactions. Since naringenin is an organic compound and 
metabolized in the human body, an advers effect has not been reported, 
so it suggested that a synergistic effect of naringenin with RDV must be 
studied in a clinical trial study. Due to the antiviral and anti- 
inflammatory effects of naringenin and the favorable interaction of 
this flavonoid compound with the SARS-CoV-2 RNA polymerase, it can 
provide a way to find an effective treatment for COVID-19 infection. 
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