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Abstract: In this paper, we reviewed the recent advances
in nanoscale modifications and evaluated their potential
for dental implant applications. Surfaces at the nanoscale
provide remarkable features that can be exploited to enhance
biological activities. Herein, titanium and its alloys are con-
sidered as the main materials due to their background as Ti-
based implants, which have been yielding satisfactory results
over long-term periods. At first, we discussed the surviv-
ability and the general parameters that have high impacts
on implant failure and the necessities of nanoscale modifica-
tion. Afterward, fabrication techniques that can generate
nanostructures on the endosseous implant body are categor-
ized as mechanical, chemical, and physical methods. These
techniques are followed by biomimetic nanotopographies
(e.g., nanopillars, nanoblades, etc.) and their biological
mechanisms. Alongside the nanopatterns, the applications

of nanoparticles (NPs) including metals, ceramics, poly-
mers, etc., as biofunctional coating or delivery systems are
fully explained. Finally, the biophysiochemical impacts of
these modifications are discussed as essential parameters
for a dental implant to provide satisfactory information for
future endeavors.

Keywords: implant, modification, nanostructure, nano-
particles, mechano-bactericidal, drug delivery

1 Introduction

Dental implants are the mainstream solution for lost
teeth. They are fabricated to mimic the function of teeth
and return the lost confidence to the patients. In the early
1980s, a 5 to 10 year follow-up on the survivability of
dental prosthesis indicated an 81 and 91% survival rate
in maxilla and mandible, respectively [1]. In this term,
the definitions of survival rate and success rate are dif-
ferent. The survival rate represents the sustainability of
the dental implants but the success rate also includes the
patients’ general satisfaction. Therefore, after 40 years,
statistics still show complications, especially in patients
with diabetes or smoking background, which implies the
necessities for the development of dental implants [2–5].

From the beginning of the 21st century, nanoscale
modifications have been of great interest [6–8]. Materials
at nanoscale display unique properties that can signifi-
cantly enhance the characteristics of dental implants and
further osteogenic responses [9]. These modifications
have a key role in controlling essential parameters of
an implant. Additionally, remarkable modifications can
be obtained by the utilization of different nanoparticles
(NPs) or nanopatterns, whereas manifold techniques can
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produce microscale surfaces, there is only a limited number
of commercial techniques that grant nanoscale structures.
These techniques, according to their performing conditions,
are categorized as mechanical, chemical, and physical
methods [10–18]. Considering the transgingival nature of
dental implants, they form three main interfaces with the
host’s biological system that consists of (i) the subgingival
hard tissue interface of the endosseous implant body, (ii)
the soft tissue transgingival interface at the implant neck
and platform, and (iii) the interface to the oral cavity with its
salivary environment at the transgingival and the supragin-
gival region [17].

At the implant interface, where most complications
are laid on, researchers have been evaluating the responses
of bone to various NPs and nanopatterns [19–22]. Coating
the implant surface with nanoscale particles surpassed the
restriction of produced residues for some metallic elements
(e.g., Cu) or extended their applications. Herein, NPs are
classified as (i) metallic-based, (ii) ceramic-based, (iii)
polymer-based, (iv) carbon-based, (v) protein-based, and
(vi) drug-based [21–33]. Utilization of these NPs may either
provide a suitable environment for biological agents or
restrict the harmful agents from disturbing the biological
system. Respecting these issues, a long-lasting coating
with both promotive and restrictive functions is the optimal
requirement for dental implants.

Aside from the inherent function of NPs, by engineering
their characteristics, especially ceramic- and polymer-based
materials, they can be used as delivery systems for a broad
range of biomaterial or biomolecules with biogenic or bio-
cidal activities [23]. Drug delivery in implants mainly
occurs under degradation, diffusion, or osmosis mecha-
nisms. Hence, the role of solubility in both the material
matrix and payload is highlighted. Designing delivery sys-
tems create a suitable environment for these biomolecules
to release at a controlled rate and maintain their function
over a longer period. Therefore, a desirable drug delivery
system can aid us to conquer several bone diseases and
secure the success of implantation.

In addition to multifunctional coatings, surface nano-
topographies are tremendously useful for biomedical
applications that offer a broad spectrum of properties
like mechano-bactericidal activity, which leads to the for-
mation of multifunctional modifications. This activity was
first found in nature by assessing bugs’wings like Psaltoda
claripennis against Gram-negative bacteria and it was
completely related to physical antibacterial mechanisms
and not chemical ones [34]. Technically, the mechano-
bactericidal function of the surface belongs to the physical
geometries of the nanopatterns that increase the stress
beyond the elastic tolerance of the membrane [19]. Therefore,

the quantity of biomaterials and subsequent adsorption rate
are not involved in the elimination of bacteria, which help the
surface to maintain its antibacterial function for longer per-
iods than chemical compounds.

In this review, we cover some uses of nanotech-
nology for the modification of the endosseous implant
body. Modifying an implant does not have a gold stan-
dard and every method may display acceptable results.
However, utilization of state-or-art procedures provides
the opportunity to combat the current challenges and
guarantees success with higher satisfaction for patients.
In the following sections, we provide pieces of informa-
tion to fulfill the demands for optimizing dental implants.

2 Nanofabrication techniques

To modify the surface morphology of the implant, diverse
techniques can be performed (Table 1). The utilization of
these techniques, depending on the procedure and per-
forming conditions, results in different surface character-
istics. From a broad range of modification techniques, the
following ones are frequently used to develop nanoscale
surfaces at the endosseous body and can be commercially
applicable. Of these techniques, mechanical methods are
the initial stage of processing and they target the rough-
ness and grain size of the surface layer. By including the
acid etching (AE) from chemical methods, the average
roughness (Ra) of the surface can be predicted. The second
stage is the accompaniment of either chemical or physical
methods. Chemical methods refer to the use of chemical
solutions, while physical methods are considered as the
formation of materials under dry conditions.

Bear in mind that despite the potential of producing
the same surface (e.g., HAp-coated Ti) by the same or two
different techniques, the ultimate result and performance
may be different [35,36]. Hence, nanofabrication tech-
niques and their performing conditions should be wisely
selected.

2.1 Mechanical methods

Of the initial manufacturing processes of implants, mechan-
ical methods were commonly used until the 1990s. Gradually,
by the development of surface morphology at smaller scales,
machining, grinding, polishing, and sandblasting (SB) are
employed to modify the surface and enhance the general
roughnesses, whereas shot peening (SP) and attrition are
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used as surface-improving methods to refine the grain size of
the top surface.

2.1.1 Machining

Back in the 1990s, machining was an essential step of
dental implant treatment and it refers to the lathing,
milling, or threading of manufacturing processes. The Ra

values obtained by machining on the Ti surface were
300 nm to 1 µm with 2–10 nm thickness of the amorphous
TiO2 layer [37]. This imperfect surface generated bymachining
can promote cell adhesion and increase osteointegration
but it simultaneously prolongs the healing period [38].
Salou et al. produced a regular array of TiO2 nanotubes
with a diameter of 37 nm and thickness of 160 nm by
machining and it displayed notable enhancements in
osteogenesis and osteointegration [39].

2.1.2 Grinding

Grinding involves diverse methods of abrasive activities
to treat metallic surfaces. Generally, there are two fre-
quently used procedures by either utilization of a belt
machine with the help of a robotic arm or a grinding
wheel with coarse particles to abrade the surface. The
belt machine is at disadvantage to producing nanoscale
surfaces but the grinding wheel with abrasive grade 60 is
able to produce Ra values of less than 1 µm [40].

In spite of its simplicity, grinding low thermal con-
ductive metals or alloys like Ti grade-5 could cause issues
including thermal damage, surface burn, residual stresses,
and grit dislodgement [41]. Therefore, conducting para-
meters in each procedure should be carefully adjusted.
Madarkar et al. abraded Ti grade-5 by using ultrasonic
vibration-assisted minimum quantity lubrication (UMQL)
and conventional MQL (CMQL) to improve the quality of
the surface. They reported that the variation of vegetable
oil in UMQL led to different hydrophilicity, density, and
viscosity as well as a reduction in cutting forces compared
to CMQL. However, resulting roughnesses from UMQL
were slightly higher than those of CMQL [42].

2.1.3 Polishing

Alike grinding, polishing is a cost-efficient method that
follows similar protocols but with the use of fine abrasive
particles. Generally, polishing is conducted through mul-
tiple processes using coarse abrasive SiC paper with 50 to

220 grit for the initial step and then finer abrasive SiC
papers above 600 grit for the next step to obtain a
mirror-like surface [40]. In chemical mechanical pol-
ishing, the produced Ra values are highly dependent on
the slurry. In this case, alumina (Al2O3), silica (SiO2), and
diamond slurry are frequently used since they should be
chemically inert [43–45]. Ozdemir et al. evaluated the
influence of pad types to optimize the roughness while
forming an oxide layer on the surface. They reported that
the lowest roughness, Ra of 350 ± 30 nm, was obtained via
alumina slurry with 3 wt% hydrogen peroxide (H2O2) [44].

2.1.4 Sandblasting (SB)

SB, also known as grit blasting, is a commonly used
method to treat the surface and modify the Ra values.
Despite machining, surface topography achieved by SB
is highly dependent on the particle size [46]. Generally,
SB refers to the projection of micro/NPs such as Al2O3,
silica, titania (TiO2), and CaP bioceramics through a
nozzle onto the surface by compressed air to erode the
surface (Figure 1). Ra values of blasted Ti were 300 nm to
3 µm [32]. More importantly, the particles used should be
chemically stable and not cause further complications
[47]. SB is a more favorable technique due to its cap-
ability of controlling surface roughness. This advantage
became noteworthy as Jamet et al. found that the accu-
mulation of bacteria on a rougher surface is higher than a
smoother surface [48]. Schupbash et al. analyzed the sur-
face of seven different dental implant manufacturers.
They reported that the presence of particles made by SB
on implants is different and not all manufacturers control
the remaining particles on their implant surfaces [49].

Figure 1: Schematic illustration of the SB process [49]. Copyright
2014, Hindawi.
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2.1.5 SP

SP, also known as shot blasting, is a surface-improving
method that promotes performance and reduces mainte-
nance of the metallic components with a cost-effective
solution. SP is a similar action as SB but with sufficient
force strikes to create a plastic deformation. Herein, large
metallic or ceramic balls with 0.25–1 mm diameter at
20–150m/s velocity bombard the surface [50]. Techni-
cally, peening is employed to refine the grain structure
of the surface by inducing residual compressive stress
through a projection of high quality and inert particles
to remove unfavorable tensile stresses from the surface
[51]. With SP, it is possible to obtain 25–80 nm grains on
the surface layer [52]. Deng et al. and Ganesh et al. stu-
died the physiobiological effect of SP on Ti surfaces. The
results displayed that utilization of different particles can
fairly or significantly change the roughness, yet it can
always increase hardness and fatigue resistance. Also, a
treated surface can enhance cell adhesion, differentia-
tion, and viability [51,53].

2.1.6 Attrition

Surface mechanical attrition treatment (SMAT) is a derived
version of the SP method with a higher potential to pro-
duce a nanocrystalline surface layer. In SMAT, 2–10mm
diameter particles at 5–15m/s velocity project multidirec-
tionally to the surface, and consequently, create multi-
directional severe plastic deformations. Compared to SP,
SMAT has higher kinetic energies that lead to the forma-
tion of a thicker nanocrystalline surface layer and deeper
residual compressive stress [54]. Jamesh et al. investigated
the effects of SMAT on the CP-Ti surface using 8mm dia-
meter Al2O3 for 900, 1,800, and 2,700 s. They reported that
at each time interval, the roughness of the surface increased
whereas the level of hydrophilicity decreased. Also, they
mentioned that the 900 s projection was not able to form
apatite until the 28th day [55].

2.2 Chemical methods

To alter the topography of the implant surface, chemical
methods are the best choices. These methods include
several techniques that change an inert surface of an
implant to a bioactive surface via oxidation, deposition,
coating, or immobilization. Chemical solutions and their
compounding ratios are the vital parts of the chemical

surface treatment that can result in different physiobio-
logical responses [56].

Primarily, chemical methods consist of AE, hydrogen
peroxide treatment (HPT), alkali treatment (AT), sol–gel,
electrochemical treatment, chemical vapor deposition,
and biochemical methods, which form a nanolayer on
the implant surface. Moreover, these methods are com-
posed of other diverse techniques like esterification, cou-
pling agent, and surface grafting that grant improvement
in the biological activity of the surface, but, herein, they
are omitted due to the inability to generate nanostruc-
tures [10].

2.2.1 AE

AE is used to clean and remove any oxide contamination from
the layer and produce a homogenous surface (Figure 2). Che-
mical acids such as sulfuric acid (H2SO4), hydrochloric acid
(HCl), hydrofluoric acid (HF), and nitric acid (HNO3) are com-
monly used acids to produce the Ra values of 300nm to 1 µm
with approximately 10nm thickness of the amorphous TiO2

layer [57]. AE is commercially a popular technique and is
usually accompanied by another acid as dual AE or another
technique (e.g., pre-SB or double AE) to improve osteocon-
ductivity [58].

Typically, etching an implant surface changes the Ra

values that lead to increasing anchorage of fibrin and osteo-
genic cells [59]. To obtain favorable roughness, diverse
parameters including bulk material, material phases, sur-
face structure, surface impurities, acid, temperature, and
soaking time must be taken into account. Variola et al.
reported that a nanopit network with different diameters
ranging from 20 to 100 nm can be fabricated via a

Figure 2: Schematic illustration of the AE process [49]. Copyright
2014, Hindawi.
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combination of strong acids or bases and oxidants on CP-Ti
[60]. Lamolle et al. etched Ti implants with HF acid and
reported that by controlling the aforementioned parameters
and solution contents, it is possible to fabricate micro- and
nanoscale topography to increase biocompatibility and pro-
vide a suitable substrate for cell growth [61].

2.2.2 HPT

HPT is a technique to enhance the bioactivity of Ti
implants by the formation of a gel-like anatase layer on
the implant. Anatase permits the bone-like apatite to deposit
after the immersion in simulated body fluid (SBF) [62]. The
altered surface escalates the osteoblast-like cells and subse-
quently accelerates osteointegration [63]. Wang et al. fabri-
cated an amorphous layer of TiO2 on the CP-Ti sheets by the
combination of HPT with AE, followed by thermally treating
up to 800°C (Figure 3). They concluded that the optimal
solution contents and heating temperature to obtain the
highest bioactivity were H2O2/0.1MHCl (1MX/0.1MY)-solu-
tion and 400–500°C [35]. Khodaei et al. evaluated the addi-
tion of F− or Cl− to H2O2 solution and concluded that the

addition of different ions to oxidizing ions can affect the
phase morphology and wettability [64].

2.2.3 AT

AT is the use of basic solutions (e.g., NaOH) to form a bio-
active nanostructured layer like sodium titanate (Na2O7Ti3)
on the implant surface [65]. Upon immersion in SBF, sodium
ions in the layer are exchanged with H3O

+ from the adjacent
fluid and form Ti–OH groups; these groups interact with
Ca2+ ions and produce amorphous calcium titanate (CaTiO3),
and ultimately, with phosphate polyatomic ions (e.g.,
HPO4

2−), they form amorphous bone-like apatite on the
implant surface. The formation of the apatite layer on
the Ti surface provides a favorable substrate for bone
marrow cell differentiation [66].

Pattanayak et al. found that exposing Ti to the strong
acid solutions (pH < 1.1) or strong basic solutions (pH >
13.6) can form bone-like apatite on the surface after
immersion in SBF within 3 days. Also, they observed
immediate apatite formation after the heat treatment pro-
cess. Generally, the generation of the apatite layer relates

Figure 3: Scanning electron microscopy (SEM) images of hydroxyapatite deposited on the Ti surface (a and b) using HPT and (c and d)
sol–gel techniques. The newly formed apatite layer depending on different conditions, pH, temperature, and time led to (a and c) initial and
(b and d) complete stages of HAp formation. [35] Copyright 2002, Elsevier; [36] Copyright 2020, Medico-Legal Update.
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to the magnitude of the positive or negative surface
charge developed on the Ti surface (Figure 4) [67]. Wang
et al. developed an economical surface treatment via a
combination of AE and AT techniques to enhance hydro-
philicity and osteoconductivity of poly(etheretherketone)
(PEEK). They used 98wt% H2SO4 as an AE solution for
5–90 s and 6wt% NaOH for 20 s. The best enhancement
was observed at 30 s etching, which decreased the contact
angle (CA) from 78° to 37° [68].

2.2.4 Sol–gel

Sol–gel, also called wet chemical deposition, is a widely
used technique to enhance the bioactivity of the implant
surface (Figure 5). The sol–gel technique is based on
colloidal suspensions in a liquid solution that generates
a solid layer by deposition of micro/NPs on a substrate.
Simply, it is used to coat a thin film of biomimetic com-
pounds (e.g., CaP compounds) to subsequently increase
osteointegration [69].

Of the notable benefits of this technique, it is possible
to maintain the activity of biomolecules and deposit more
complex compounds (e.g., compounds with the incor-
poration of drugs) on the implant surface [70]. Moreover,
sol–gel has the potential to deposit an extended range of
metal oxides such as TiO2, TiO2–CaP composite, or silica-
based coatings on metallic/nonmetallic surfaces [71].
Esmael et al. successfully coated HAp and chitosan NPs
on the Ti surface and immersed it in SBF. They reported

that utilization of HAp has a synergetic impact on both
the bioactivity and new apatite formation (Figure 3) [36].

2.2.5 Electrochemical treatment

Electrochemical treatment mainly refers to the three tech-
niques, namely, anodic oxidation (AO), macro-arc oxida-
tion, and electrophoretic deposition, which are commonly
used in dental implant surface treatments.

2.2.5.1 AO

AO, also known as anodization, is a technique to fabri-
cate nanostructured surfaces via potentiostatic or galva-
nostatic anodization by controlling several parameters
including electrolyte composition, electric current, anode
potential, temperature, and distance between the anode
and cathode (Figure 6). Herein, implant as the anode is
immersed in a homogenous electrolyte containing strong
acids such as phosphoric acid (H3PO4), ammonium fluoride
(NH4F), H2SO4, HF, or HNO3 or inhomogeneous electrolytes
such as NaCl:NH4F [73] and NaHSO4:HF:NaF [74] with the
passage of a high current density or voltage.

AO enhances the corrosion resistance of metals (e.g.,
CP-Ti or Ta) by the formation of thick oxide layers.
Moreover, the fluoride ions present in the electrolyte
results in a nanotubular structure on titania [75]. Fialho
et al. compared single and double AO on the Ta surface

Figure 4: FE-SEM images of the Ti surface exposed to solutions with different pH values and subsequently immersed in SBF for 3 days
(a) before and (b) after heat treatment [67]. Copyright 2012, The Royal Society.
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with the incorporation of Ca2+, PO4
3−, and Mg2+ ions on

the surface; after the first anodization, enhancements in
roughness and hydrophilicity were observed but after the
second one, they also formed an amorphous tricalcium
phosphate (TCP) on the surface [76].

2.2.5.2 Micro-arc oxidation (MAO)

MAO, also called plasma electrolytic oxidation (PEO), is
the modified version of the AO technique with the assis-
tance of plasma and high voltage to fabricate oxide pro-
tective layers on metallic surfaces like Ti, Ta, Mg, Al, and
Zr and their alloys [78]. Alike AO, the implant as the
anode and the stainless steel as the cathode are immersed
in an electrolyte and a high voltage is applied on the
electrolyte that gradually coats an oxide layer on the
implant surface [79].

In MAO, the electrolyte composition is the key para-
meter that defines the final composition, porosity, and
thickness of the coated layer. Sedelnikova et al. fabricated
the Sr–Si–CaP and Ag–CaP incorporated coatings with

different ratios of electrolytes and reported that the Ag–CaP
coating contained pores and isometric particles of β-TCP uni-
formly distributed but the Sr–Si–CaP coating had spheroidal
elements and open pores on their surfaces [80].

Figure 5: Schematic illustration of the sol–gel techniques [72]. Copyright 2020, Frontiers.

Figure 6: Schematic illustration of the AO process [77]. Copyright
2017, Journal Teknologi.
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2.2.5.3 Electrophoretic deposition (ED)

ED is a cathode-based electrochemical method. ED refers
to the deposition of colloidal particles on the substrate by
passing a high voltage in a suspension (Figure 7). This
method has the potential to coat HAp NPs with 18 nm
thickness on the surface within 30min [81]. Moreover,
the combination of MAO and ED can generate a top layer
of phase-pure HAp and an interlayer of anticorrosive TiO2

[82]. Hashim et al. evaluated the syntheses and deposition

of TiO2, ZnO, and Al2O3 by rapid breakdown anodization
(RBA) and ED. They reported that Ti, TiO2 and Zn, ZnO
particles were able to form bone-like apatite using the
RBA technique but Al2O3 did not have the potential [83].

2.2.6 Chemical vapor deposition (CVD)

CVD is used to form thin layers on the implant surface by
gaseous compounds. CVD involves chemical reactions
between gas-phase chemicals and the surface that deposits
nonvolatile compounds on the surface (Figure 8). Kania
deposited diamond NPs on Ti orthopedic implants and
observed notable increases in hardness, toughness, and
adhesion [85]. CVD can be performed by many approaches
and include atmospheric-pressure CVD (APCVD), low-
pressure CVD (LPCVD), plasma-enhanced CVD (PECVD),
and laser-enhanced CVD (LECVD). Moreover, a combina-
tion of CVD and PVD as a hybrid method was also devel-
oped [11].

CVD is capable of metalloceramic coatings by which
it is possible to form nanocrystalline metallic bonds at the
interlayer and hard-ceramic bond on the surface that
subsequently overcomes adhesion problems in ceramic
hard coatings on metallic substrates [86]. Chen et al. eval-
uated enhanced fluorine and oxygen mono/dual CVD to
produce nanoscale coatings with antibacterial activity on
the Ti surface. They found that fluorine deposited surface
is able to kill Staphylococcus aureus (S. aureus) bacteria.
Also, the presence of F and O elements has synergetic
impacts on antibacterial activity, promotion in cell spreading,
improvement in corrosion resistance, and biocompat-
ibility [87].

Figure 7: Schematic illustration of the electrophoretic deposition
process [84]. Copyright 2015, ACS.

Figure 8: Schematic illustration of a chemical vapor deposition system.
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2.2.7 Biochemical methods

To modify the implant surface with superior biological
activities, biomolecular cues (BMCs) and antibacterial
agents or drugs are the best candidates. The utilization
of these large molecules is classified under biochemical
methods, which is a subgroup of chemical methods.
Hence, sole or incorporation of different biological mate-
rials with biomaterials has been seen, like BMCs with
osteoinductive effect (e.g., cell adhesive proteins), nano
CaP compounds with BMCs or antibacterial drugs, or
direct coating of antibacterial agents or drugs. It should
be noted that obtaining the aforementioned coatings can
also be achieved viamethods like sol–gel and magnetron
sputtering (MS). However, SAMs are technically used to
coat nanoscale biochemical molecules on the implant.

2.2.7.1 Self-assembled monolayers (SAMs)

SAMs can spontaneously coat nanoscale biochemical
molecules by exposing specific substrates and functional
end groups (Figure 9). SAMs are formed by the adsorption
and self-assembly of molecules (e.g., alkane phosphate)
andbiomolecules [e.g., growth factors like bonemorphogenetic

protein-2 (BMP-2)] at the interface, which may either accel-
erate or provide different bioactivities [88–90]. Herein,
surface roughness has a superior impact on the anchorage
of fibroblast cells than wettability [15]. Moreover, surface
modification techniques and molecular grafting have a
synergetic role to increase the reactiveness between the
outward surface and tailored ends of SAM molecules [91].

SAMs have the potential to immobilize biocompatible
molecules on the surface (linking function) that helps the
ECM components (e.g., laminin [92], fibronectin [93],
heparin [94], collagen [95], antibiotics [96], and growth
factors [97]) to covalently bound onto the Ti surface.
Urface et al. self-assembled arginine-glycine-aspartic-
cysteine (RGDC) on the gold-coated Ti surface and
observed enhancements in cell attachment, spreading,
and proliferation [98].

2.3 Physical methods

Physical methods of modification are the transformation
of an inert surface to a bioactive one under dry processes.
These methods include a variety of single/hybrid proce-
dures which generate a bioactive surface via the formation

Figure 9: Schematic illustration of the SAM process, preparing, and analyzing antibacterial activity of cefotaxime sodium-decorated Ti by
coating polydopamine (PDA). The possible chemical structure, as well as the suggested reaction mechanism, is also shown [96]. Copyright
2014, Journal of the Royal Society Interface.
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of layers of material on the surface or decontaminating it.
Primarily, physical methods include plasma spray (PS),
physical vapor deposition, ion-beam deposition, litho-
graphy, and laser treatment.

2.3.1 Plasma spray (PS)

PS is the most widely used technique to coat biomaterials
on the implant surface. PS is the process of projection and
condensation of high-temperature molten droplets on the
surface (Figure 10). The temperature achieved by PS is
much higher than similar procedures, which vary its
applications of coating an extended group of materials
such as Au, Ag, Ti, Zr, as well as other metals, ceramics,
and polymers with the thickness of <100 nm [21,66,99].
Wang et al. coated Ti surface with Ta after two-step of AO
and reported that Ta/TiO2 nanotubes were fabricated at
micro- and nanoscales. Also, numerous enhancements in
roughness, wettability, adhesion, differentiation, minerali-
zation, and osteogenesis-related gene were observed [100].

2.3.2 Physical vapor deposition (PVD)

PVD is used to produce metal particles that react with
reactive gases to form compounds deposited on the
implant surface. Technically, high-energy ions are ejected
in a vacuum chamber that changes the surface of the sub-
strate and form thin films (Figure 11).

PVD includes three techniques, namely, evaporation,
ion plating, and sputtering. Herein, sputtering, also known
as sputtering deposition (SD), and derived techniques of
ion plating are the most commonly usedmethods to deposit
nanostructured films on the implant surface. Moreover, the
development of SD led to more advanced techniques called
ion beam sputtering (IBS) and MS (Figure 12) [101]. Huang
et al. evaluated the incorporation of antibacterial agents
onto the surface of the implant via the MS technique.
They observed an acceptable bactericidal effect under
optimum processing parameters [102].

2.3.3 Ion-beam-assisted deposition (IBAD)

IBAD is the combination of ion implantation and SD. In
the IBAD technique, the implant surface is covered with
an elemental cloud that is formed by ion bombarded pre-
cursors and targeted by highly energetic gas ions (e.g.,
inert Ar+ ions or reactive O2+ ions) to collide the gaseous
ions to substrate ions and decrease the energy of the
precursors in the elemental cloud to form a thin layer
of material on the surface (Figure 13).

This technique has several potentials including synth-
esis of the highly pure layer under ultraclean process and
notable adhesion between the deposited layer and implant;
also the process does not change the bulk properties of the
substrate and it can be performed under controlled condi-
tions [105]. The variables such as time, temperature, and
amount of the water vapor present are considered as the

Figure 10: Schematic illustration of the PS process [72]. Copyright 2020, Frontiers.
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main contributors to favorable crystallinity. Usually, this
method is accompanied by heat treatment to change the
amorphicity of the deposited layer to a crystalline phase.
Miralami et al. fabricated ZrO2 and TiO2 coatings on the Ti
surface. They found that nanostructures generated by IBAD
enhanced bone-associated gene expression at initial cell
adhesion, proliferation, and differentiation [106].

2.3.4 Lithography

Lithography is a favorable technique in electronic indus-
tries and is used to pattern specific models on a rigid
substrate. Lithography consists of both top-down and
bottom-up procedures to fabricate nanostructures. In
top-down procedures, three widely used techniques

Figure 11: Schematic illustration of the physical vapor deposition process, sputtering, for deposition of target coatings [103]. Copyright
2021, MDPI.

Figure 12: Schematic illustration of the MS process [104]. Copyright 2020, Royal Society of Chemistry.
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including photolithography, electron beam lithography,
and colloidal lithography are used and in bottom-up pro-
cedures, techniques like polymer phase separation, col-
loidal lithography, and block copolymer lithography are
well-known [20,107]. The concept of patterning is simple,
for example in photolithography, a predefined pattern is
fabricated on a mask and locates upon the substrate that
has been coated by a photoresist layer (e.g., chromium)
and after the exposure of ultraviolet (UV) radiations, the
pattern will transfer into the surface and the remaining
photoresist layer can be chemically etched (Figure 14) [13].

Generating nanostructures with photolithography smaller
than 100 nm is restricted by its diffraction limits [108].
However, electron beam lithography has overcome the
limitation and has the potential to fabricate nanostruc-
tures down to 5–7 nm [109,110].

2.3.5 Laser treatment

Laser treatment uses high-energy beams to generate 3D
structures at the micro/nanoscale. This technique is

Figure 13: Schematic illustration of the IBAD system and process [105]. Copyright 2011, Elsevier™.

Figure 14: Schematic illustration of photolithography [111]. Copyright 2019, Elsevier™.

648  Mohammadmahdi Akbari Edgahi et al.



capable of producing complex selective surface topo-
graphy with high resolution [112]. Moreover, laser treat-
ment is a rapid and ultraclean nanofabrication technique
that has precise, targeted, and guided surface rough-
ening that can be performed under controlled conditions
for the selective changes in implants [66]. Chang et al.
used 3D laser-printed porous Ti grade-5 and reported that
porous dental implant had the active new bone formation
and good osteointegration. Also, its biomechanical para-
meters are significantly higher than the commercially
controlled samples [113].

3 Surface nanotopography

Recent advances in implant development have led to
nanoscale topographies. Nanotopography is a character-
istic of a surface that implies a specific physiobiological
interaction between the nanopatterns and the environ-
ment. At the nanoscale, better interaction with the cell
membrane has been reported [114]. Generally, numerous
nanopatterns have been developed for bone regeneration
applications (Figure 15). Therefore, biomimetic nano-
topographies with mechano-bactericidal activity attracted
a lot of attention as they can rupture the cell membrane
through physical forces (Figure 16). This group is categor-
ized into two subclasses: (i) nanopillars and (ii) nanoblades
and their derivations. The first consists of nanopillars,
nanospikes, nanotubes, nanocones, nanospears, nano-
needles, nanowires, and spinules. The latter includes
nanoblades and nanocolumns [19,115].

The efficacy of bactericidal activity of nanopillars is
dependent on several parameters but only four key geo-
metric parameters including spacing, base diameter, tip
diameter, and height are considered for the measure-
ments (Figure 17) [116]. However, obtaining the optimum
results requires considering the finite size and shape of
bacteria plus the geometry of the nanopattern on the
degree of bacterial membrane stretching using parameters
such as bacterial stretching modulus, bending modulus,
adhesion energy of the cell membrane, as well as radius,
height, and spacing of the nanopillars [117].

Normally, nanopatterns are biocompatible yet decreasing
in parameters like the tip diameter can reversely affect the
osteogenic cells [118]. Therefore, utilization of nanotopogra-
phies with no bactericidal potential may be a sensible option
as they are still able to chemically interact with bacteria and
eliminate them. Of this group, nanopillars, nanotubes, nano-
fibers, nanogrooves, nanopits, and nanorods demonstrated
higher cellular affinity [20,119,120].

3.1 Nanopillars

Nanopillars can be fabricated on the Ti surface by the AO
technique with different states in arrangement [123,124].
The mechano-bactericidal activity of this nanotopography
was first found from surfaces in nature [34]. This activity
occurs by scratching the adsorbed cell wall and rupturing
it by putting stress beyond its elastic limit [117,122,125].
Biologically, changes in the height of nanopillars lead to
different responses from the cytoskeletal organization and
cell morphology. The bactericidal mechanism of nano-
pillar and its derivations can be augmented by the deflec-
tion of elastic nanopatterns that induce additional lateral
stress on the bacterial cell wall (Figure 18) [126]. In this
case, both carbon nanotubes (CNTs) and high-aspect-ratio
silicon nanowires displayed notable promotion in their
mechano-bactericidal activity caused by their potential
to deflect regarding bacterial attachment.

As shown in Figure 17(d), the amount of lateral tip
deflection (δ) caused by the generated forces from bac-
terial adsorption (P) is controlled by the length (L) of the
nanopillars, as well as the attaching position of the bac-
teria to the cell membrane. Therefore, to obtain equal
energy as longer nanopillars, shorter and low-aspect-ratio
nanopillars should deflect less. Mcnamara et al. evaluated
the cell organization of cytoskeleton cells on different
nanopillars’ heights (8, 15, 55, 100 nm pillars) spread to
polygonal shapes and observed that cytoskeleton cells
were highly organized on 8 and 15 nm pillars, while by a
gradual increase in the height, less organization were seen
[127,128]. Moreover, planar control can significantly affect
the focal adhesions and most of the larger focal adhesion
per cell, but it can reversely affect the total number of
adhesions per cell [127,128]. Similarly, variation in nano-
pillars’ height could not affect the osteogenic differentia-
tion but it could enhance its bactericidal activity as it was
higher and sharper [123,129]. Also, differences in their
shapes can significantly affect osteogenic cell differentia-
tion [130].

3.1.1 Nanospikes

Nanospikes are a derivation of nanopillars with a longer
length, sharper tips, and high aspect ratio. Physical para-
meters of nanospikes were 20–80 nm in diameter and
500 nm in height, which by considering their sharpness,
they can also restrict cellular activities. Therefore, Ivanova
et al. fabricated the only in vivo biocompatible andmechano-
bactericidal nanospikes by using black silicon [118]. Nanos-
pikes are able to induce severe stress on the cell membrane
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Table 1: A summary of nanofabrication techniques and their advantages for dental implants [101]

Mechanical methods

Technique Surface
morphology

Advantages Disadvantages

Machining 0.3–1 µm Ra with
10 nm oxide layer

• Enhanced cell adhesion
and osteointegration

• Fabricating imperfect surfaces that prolong the healing
process

Grinding Less than 1 µm Ra • Improved
osteointegration,
hydrophilicity, density, and
viscosity

• May cause several damages to the surface
• Difficult operation for dental implants

Polishing ∼ 350 nm Ra • Improved
osteointegration and
surface quality

• Performing multiple steps

• The potential to use
different chemicals within
the slurry

SB 0.3–3 µm Ra • Enhanced
osteointegration

• Particles remain on the surface

• Controllable surface
roughness

SP 25–80 nm grains • Increased cell adhesion,
differentiation, and
viability

• Superficial grain refinement

• Higher surface quality • Limited particle size for dental application
Attrition Less than 100 nm

grains
• Higher surface quality • Not applicable for dental implant
• Deeper grain refinement • Increased hydrophobicity at smaller scales

Chemical methods

Technique Surface morphology Advantages

AE 0.3–1 µm Ra with 10 nm oxide
layer

• Increase anchorage of fibrin and osteogenic cells
• Potential of fabricating nanotopography

HPT Less than 10 nm inner oxide layer • Improved biocompatibility
Up to 40 nm outer porous layer • Ability to form apatite

AT ∼1 µm layer of sodium titanate
(Na2TiO3) gel

• Improved cell differentiation
• Ability to form apatite

Sol–gel Less than 10 µm of a thin layer of
ceramic

• Wide selectivity of biomaterials
• Ability to deposit complex compounds
• Easy processes
• Highly bioactive surface

Electrochemical
treatment

∼ 10 nm–10 µm layer of
uniform TiO2

• Enhanced bioactivity and corrosion resistance
• Potential of fabricating nanotopographies

CVD ∼1 µm layer of TiC, TiN, TiCN,
diamond-like carbon, and
diamond NPs

• Enhanced biocompatibility
• Significantly high surface quality

SAMs — • Highly improved biogenic and/or biocidal activities

Physical methods

Technique Surface morphology Advantages

PS Less than 100 nm layer of
metallic, ceramic, or polymer
compounds

• Improved surface quality and biocompatibility
• Wide selectivity of biomaterials

SD Less than 1 µm layer of TiC, TiN,
TiCN, and amorphous carbon

• Enhanced biocompatibility
• Significantly high surface quality

IBAD • Enhanced biocompatibility

(Continued)
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that has high efficacy against both Gram-positive and Gram-
negative bacteria, even highly resilient Bacillus subtilis
(B. subtilis) endospores were annihilated [132]. Black
silicon nanospikes are not able to interact with the bio-
logical environment and if the surface sustains unharmed
after sterilization, it has the potential for mechano-bacter-
icidal applications.

3.1.2 Nanotubes

Nanotube arrays, also known as nanodarts, on the Ti sur-
face have been achieved by numerous methods. In this
nanotopography, physical parameters including the tube
diameter, the thickness of the nanotube layer, and the
crystalline structure can influence the cellular responses
[133–135]. Nanotube arrays are of attractive topographies
due to their effectiveness to promote osteointegration
[136,137]. Moreover, nanotube arrays of Ta on the Ti sur-
face significantly increase the cell morphology and pro-
liferation, and osteogenic differentiation of stem cells
[138,139]. Gulati et al. evaluated the influence of dual
topography composed of microscale spherical particles
and vertically aligned TiO2 nanotubes via 3D printers.
This topography could obtain good enhancement in osteo-
genic gene expression [140].

Generally, when bacteria are adsorbed onto the sur-
face of CNTs, it leads to tip deflection and retraction,
which subsequently disturbs the physical membrane of
the bacteria and results in cell death [141]. The bacteri-
cidal effectiveness of CNTs is different, e.g., short CNTs
with an aspect ratio of 100 have higher efficiency than
longer CNTs with an aspect ratio of 3,000 (Figure 19). This
effect is attributed to the larger storage of elastic energy
by short CNTs that can spontaneously pierce the mem-
brane [142]. Themechano-bactericidal of CNTs was discov-
ered when Elimelech et al. observed significant damage to

the cell membrane of Escherichia coli (E. coli) as it directly
contacts single-walled CNTs (SWCNTs) [143]. SWCNTs
with diameters between 1 and 5 nm have less effect on
the direct piercing of a phospholipid bilayer and the free
energy costs are regarded as the minimum energy for
creating a pore in the bilayer [142]. However, hydro-
phobic SWCNTs demonstrated greater interaction with
phospholipid tails and subsequently entrapped the CNT
in the bilayer core in parallel orientation [144]. It should
be noted that increasing the tension on the membrane
facilitates the translocation of nano-objects through the
membrane. Moreover, highly hydrophobic CNTs, as well
as graphene, are able to create unstable pores in the mem-
brane by rotation of lipid tails to carbon surface and con-
stant extraction of lipids [145].

3.1.3 Nanoblades

Graphene sheets, also known as nanoblades, with 10–15 nm
edges, are of the second category of mechano-bactericidal
nanotopographies that are 2D sheet-like nanomaterials con-
sisting of a single layer of carbon atoms. In most nano-
blades, it is essential to be perpendicularly oriented, but
in nanosheets, the orientation of 37° demonstrated suffi-
cient bactericidal activity [146–148]. The general antibac-
terial activity of graphene has been achieved through
both physical and chemical states [149–152]. The physical
interaction of graphene is shared with its derivations,
namely graphene family nanomaterials (GFNs), which
due to possessing certain parameters, their bactericidal
activities can be predicted [153]. The addition of graphene
nanosheets in chemical suspensions (Figure 20) provides
sufficient antibacterial activity to rupture both Gram-nega-
tive and Gram-positive bacteria by creating pores in their
cell membrane and stimulating the alteration of osmotic
pressure that resulted in cell death [147].

Table 1: Continued

Mechanical methods

Technique Surface
morphology

Advantages Disadvantages

∼10 nm of a modified layer with/
without TiN or TiO2

• Significantly high surface quality

Lithography ∼60 nm layer of ultrafine
nanotopography

• Potential of fabricating specific nanotopographies
• Enhanced bioactivity
• Improved bone-implant contact

Laser treatment — • Ability to fabricate multiphase composition at micro- and nanoscale
• Improved cell adhesion and overall biogenic activities
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Akhavan et al. evaluated the antibacterial activity
of graphene oxide nanowalls (GONWs) on E. coli and
S. aureus as Gram-negative and Gram-positive bacteria,
respectively. They observed GONWs have stronger anti-
bacterial activities against S. aureus by colony-forming
unit (CFU) enumeration and quantification of cytoplasmic
RNA leakage [153]. Similarly, Liu et al. confirmed that the
bactericidal effect of GFNs against Gram-positive bacteria
like E. coli was attributed to their sharp edges that can
induce sufficient stress on the cell membrane (Figure 21)
[154]. The mechanical disruption of GFNs is bonded to the
degree of lipophilicity as the higher lipophilic one is able
to facilitate the extraction of lipids from the cell membrane
[155,156]. However, the progress of extermination of bac-
teria consists of complex processes including extraction of
the lipids, formation of pores, alternation of osmotic pres-
sure, and ultimately, cell death.

3.1.4 Nanofibers

Of the nanotopographies with biological activity, nano-
fibers are a great choice for bone tissue engineering scaf-
folds. Nanofibers possess notable properties including
high surface-to-volume ratio, well-retained topography,
facile control of components, and the capacity to mimic
the native ECM that can affect adhesion, proliferation,
and differentiation of stem cells [158–160]. Xu et al. fab-
ricated a scaffold made of polylactic acid (PLA) and chit-
osan by the electrospinning technique. To generate a
core–shell and island-like structure, they mixed electro-
spinning with automatic phase separation and crystalli-
zation. By culturing preosteoblast cells (MC3T3-E1), they

observed a balanced hydrophilic and hydrophobic sur-
face that successfully enhanced mineralization and cell
growth, as well as alkaline phosphatase (ALP) activity of
MC3T3-E1 cells [161]. The utilization of simple techniques
like electrospinning provided a remarkable potential for
some bioactivematerials or NPs to incorporate into the nano-
fibrous structured scaffold [162–164]. Yao et al. assessed the
biological responses of gelatin nanofibrous scaffold with
locally immobilized deferoxamine (DFO). It reduced the cyto-
toxicity of human umbilical vein endothelial cells (HUVECs)

Figure 15: Schematic illustration of some nanopatterns [121].
Copyright 2016, Elsevier™.

Figure 16: Schematic illustration of the mechano-bactericidal function
of the surface. (a) Contacts of a bacteria cell with the wing nanopillar
surface. (b) Adsorption of the membrane to the surface protrusions
leads to stretching of the cell membrane. (c) Gradual progress of
adsorption leads to broad stretching at the contact regions and ulti-
mately (d) cell death [122]. Copyright 2013, Elsevier™.
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Figure 17: Schematic illustration of the physical parameters affecting the mechano-bactericidal activity of nanopillars and their derivations.
(a) Examples of different nanopatterns with varied biocide levels. (b) The geometric characteristics are simplified based on the spacing,
base diameter, tip diameter, and height. (c) Increasing the aspect ratio changes the rigid nanopillar to a flexible one, and subsequently,
is accompanied by different cellular and antibacterial responses. (d) According to the aforementioned parameters, the strength of each
individual nanopattern to impose physical forces on the cell membrane is related to the geometries. (e) Fabrication of nanopatterns can be
either in random or periodic arrays. Therefore, the optimized mechano-bactericidal function demands significant attention to the geometric
parameters and cautious fabrication.

Figure 18: SEM images of some (a–d) natural bactericidal nanotopography and (e–h) synthetic bactericidal nanotopography [131]. Copy-
right 2021, Elsevier™.
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and human mesenchymal stem cells (MSCs). Also, it has
significantly promoted vascular endothelial growth factor
(VEGF) expression in human MSCs and BMP-2 expression
in HUVECs [165].

3.1.5 Nanogrooves

Despite no bactericidal activity, nanogrooves are still an
interesting option for their potential to promote themigration
and proliferation of osteoblast cells [166]. An investigation on
cellular affinity on micro- and nanogrooved surfaces dis-
played a significant reduction of up to 40% of cell-repelling
capacity on microgrooved than nanogrooved surfaces [167].
Klymov et al. compared the smooth and grooved CaP-coated
surface by culturing osteoblast-like MC3TC cells. They found
that not only did nanogrooved surfaces promote the differ-
entiation and mineralization processes but they also orga-
nized the morphological deposition of minerals [168].

3.1.6 Nanopits

Nanopits can be generated by PVD techniques with con-
trolled nanopore size. Herein, a few pieces of research
have been done to understand the physiobiological func-
tion of this nanopattern. Lavenus et al. evaluated the
presence of human MSCs on the Ti surface with varied
nanopore diameters. They observed that human MSCs
exhibited a more branched cell morphology on nano-
pores with 30 nm pore size [169]. Similarly, Dalby et al.
investigated the influence of spatial arrangement of nano-
pits on osteogenic differentiation on the poly(methyl-
methacrylate) (PMMA) surface and cultured osteoprogenitor
and MSCs on nanopits with diameter, depth, and center–
center spacing of 120, 100, and 300 nm, respectively, as well
as with the spatial arrangement of the square array, hex-
agonal array, disordered square arrays with 20 and 50 nm
displacement from their square position (20-DSA and
50-DSA), and randomly positioned. Within the 21st day,

Figure 19: Suggested penetration mechanism of hydrophobic
ultrashort CNT (USCNT) by rupturing the lipid bilayer of the cell wall.
(a) Dioleoylphosphatidyl-choline (DOPC)-capped USCNT interacts
with the bacterial cell membrane by exchanging lipids. (b) USCNT
becomes wrapped by lipids that results in dysfunctioning the
membrane via the formation of pores. To obtain a general per-
spective of the process, some normal lipids of the bilayer were
substituted by fluorescent lipids that can be detected by fluores-
cence microscopes [145]. Copyright 2018, ACS Publications.

Figure 20: Schematic illustration of the antibacterial activity of graphene oxide (GO)-based on mass spectrometry [157]. Copyright 2016,
Scientific Reports.
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observation demonstrated a significant increase in levels
of osteopontin (OPN) and osteocalcin (OCN) on 50-DSA
surfaces compared to other surfaces. With the same result
for MSCs, it was spotted thatMSCs have a greater affinity to
DSA surfaces than other surfaces [124].

4 Multifunctional coatings

Modifying implants with NPs is a promising procedure to
reduce the risk of failure. Implants, depending on the
patient’s general condition, may need to be treated with
different NPs to guarantee their success (Figure 22). Herein,
we classified these NPs according to their nature as
(i) metallic-based, (ii) ceramic-based, (iii) polymer-based,
(iv) carbon-based, (v) protein-based, and (vi) drug-based
coatings (Table 2). In the following sections, the subclasses
and their biological applications in modifying the endoss-
eous implant body are explained.

4.1 Metallic-based coatings

4.1.1 Tantalum (Ta5+)

Tantalum (Ta) as both implant material and surface coating
obtained considerable attention. Ta is a biocompatible

metal with high corrosion resistance and favorable elastic
modulus [32]. Ta is able to promote bone ingrowth and
osteoconductivity, which are notable parameters as the
secondary stability of implants [170]. Alves et al. deposited
Ta-derived coatings on the Ti surface. They observed
higher Ca:P ratio formation on the surface, which was
attributed to the high oxygen content of the coating that
increases the affinity for apatite adhesion [171]. Zhang et al.
coated tantalum nitride (TaN) on the Ti surface. Results
displayed higher antibacterial and corrosion resistance
than individual Ti or TiN coatings [172]. Similarly, Zhang
et al. coated Ta on the Ti surface to assess its biological
activities. Ta-treated Ti could effectively kill Fusobacterium
nucleatum (F. nucleatum) and Porphyromonas gingivalis
(P. gingivalis) microbes. Also, it promoted osteointegration
by activating the secretion of bone-forming proteins [173].

4.1.2 Titanium (Ti4+)

Coating titania (TiO2) NPs have various applications in
medicine. Titania possesses unique photocatalytic prop-
erties by being exposed to visible or UV light irradiation
[174]. TiO2 NPs possess excellent biogenic and biocide
properties. The antibacterialmechanismof TiO2 is attributed
to the formation of hydroxyl radicals by a photocatalytic
reaction in an aqueous environment that targets the pepti-
doglycan cellmembrane and interactswith polyunsaturated

Figure 21: Schematic illustrations, small angle X-ray scattering (SAXS), and atomic forcemicroscopy (AFM) characterization of GO composite to define
its orientation in bulk and on the surface of specimens, respectively. According to the 3D illustration, the X-ray beam is located parallel to the film
plane, and the AFM probe is placed above the surface. (a) Composite without GO nanosheets displayed minor scattering intensity in the 2D SAXS
pattern and smooth surface in the 3D AFM image. (b) Composite with randomly oriented GO nanosheets displayed a notable increase to a broad,
isotropic halo in the 2D SAXS pattern, and a sharp increase in roughness in the 3D AFM image. (c) Composite with vertically GO nanosheets displayed
anisotropic equatorial scattering in the 2D SAXS pattern, and vertical alignment in the 3D AFM image. (d) Composite with planar GO nanosheets
displayed anisotropicmeridional scattering in the 2D SAXS pattern and a smoother surface in the 3D AFM image [148]. Copyright 2017, PNAS.
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phospholipids, ultimately damaging the DNA and resulting
in cell death [175]. Chidambaranathan et al. compared
the antifungal activity of TiO2, ZrO2, andAl2O3NPs coated
on the Ti surface. After 24, 72 h, and 1-week time intervals,
TiO2 demonstrated significant antibacterial activity against
Candida albicans (C. albicans) bacteria than the other
NPs [176].

On the other hand, the utilization of titania NPs can
improve osteogenic activities like increasing the level of
osteoblast cells on the surface, which leads to higher
bone generation [177–179]. However, introducing TiO2

nanotubes attracted considerable attention. Primarily,
TiO2 nanotubes were fabricated to increase the biogenic
activity and enhance the osteointegration, but, as a bio-
cide agent, they possess antimicrobial function by being
accompanied by other antibiotics compounds like vanco-
mycin, gentamicin, silica-gentamicin, gentamicin sulfate,
BMP-2, and heparinized-Ti to eliminate Gram-positive
bacteria like S. aureus [180–186].

4.1.3 Silicon (Si4+)

In nanotechnology, silicon (Si)mainly as silica (SiO2) NPs
obtained a unique position. The utilization of these NPs
enhances osteogenic differentiation of MSCs by increasing

the osteoblasts’ adhesive response that consequently leads
to higher osteointegration [187]. Moreover, SiO2 NPs depending
on their size display different levels of hydrophilicity that
can be exploited in drug-releasing applications [188]. Also,
their products from degradation generate silicic acid
[Si(OH)4], which is a supporting compound to generate
connective tissues [185]. Csík et al. coated the CP-Ti sur-
face with calcium silicate (Ca2O4Si) (CaSi) NPs by electro-
spray deposition (ESD) followed by thermal treatment at
750°C to examine its properties. They observed that CaSi
NPs could effectively reduce the E. coli and S. aureus
bacteria and promote human MSC activity [189]. Massa
et al. assessed the antibacterial activity of SiO2 and the Ag
nanocomposite (NSC/AgNPs) coated on Ti grade-5. They
reported that not only did NSC/AgNPs kill the Gram-
negative bacteria, Aggregatibacter actinomycetemcomitans
(A. actinomycetemcomitans), but it also reduced the biofilm
formation up to 70%, compared to the control group [190].
Catauro et al. developed the silica/quercetin hybrid as an
antioxidant drug to scavenge the reactive oxygen species
(ROS) and reactive nitrogen species (RNS) for dental implant
applications. Quercetin is able to maintain the conditions of
the general tissues against osteoporosis, pulmonary, and
cardiovascular diseases, a particular spectrum of cancer,
andpremature aging. The results showed that quercetin suc-
cessfully restricted the dehydrogenases’ activity [191].

Figure 22: Applications of nanoparticle coating in dentistry [22]. Copyright 2018, Elsevier™.
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4.1.4 Cerium (Ce4+)

Ceria (CeO2) is another NP with strong anti-inflammatory
and antibacterial activities. CeO2 NPs possess superoxide
dismutase (SOD) and catalase (CAT) enzymatic activities,
as well as ROS-scavenging [26]. Li et al. evaluated the
biological responses of CeO2 NPs coated on the Ti surface.
The results showed that CeO2 NPs have no cytotoxicity to
MC3T3-E1 cells and they can improve cell adhesion; also
CeO2 coating maintained intracellular antioxidant defense
system fromH2O2-treated osteoblasts [192]. Qi et al. evaluated
the incorporation of CeO2 and calcium silicate (Ca2O4Si). This
composite displayed sufficient biocompatibility and anti-
microbial activity against Enterococcus faecalis (E. faecalis)
[193]. Ceria with varied nanopatterns exhibited different
levels of antibacterial activity. Li et al. compared the biocide
activity of ceria NPs with different nanotopographies. They
fabricated three nanopatterns including nanorod, nanocube,
and nano-octahedron to select the one with less presence of
Streptococcus sanguinis (S. sanguinis) bacteria. From in vitro
and in vivo tests, they concluded that nano-octahedron had
stronger anti-inflammatory and antibacterial activities [194].

4.1.5 Gold (Au3+)

In terms of medical application, gold (Au) NPs have been
frequently used due to their notable mechanical, che-
mical, and optical properties. Despite the high price of
gold that may be restrictive, still, its utilization is inevi-
table. In dentistry, Au NPs demonstrated both biogenic and
antibacterial activities but within the range of 40–50 nm,
they are toxic. Therefore, their applications have been lim-
ited to 20–40 nm, which has been found to be the optimum
cellular affinity [195]. Au NPs possess antibacterial, anti-
fungal, and anticancer functions [196,197]. The antifungal
effects of Au NPs are highly dependent on their geometry
[198]. Technically, the antifungal mechanism of Au NPs is
based on the prevention of the H+-ATPase action or trans-
membrane H+ efflux action of Candida bacteria [30]. In gen-
eral, the bactericidal effects of Au NPs are weaker than Ag on
both Gram-positive and Gram-negative bacteria [199–201].
The antibacterial mechanism of Au NPs is based on the pre-
vention of ribosome subunit for t-RNA binding or changing
the membrane potential and obstructs the ATP synthase,
which disturbs both the biological system and results in
cell death. Also, the interaction of Au NPs is free of ROS,
which implies less toxicity on mammalian cells [202].

Regiel-futyra et al. coated chitosan-based Au composite
NPs on Ti implant. This innovative composite displayed
remarkable antibacterial function against antibiotic-resistant

strains of Pseudomonas aeruginosa (P. aeruginosa) and
S. aureus without any sign of cytotoxicity [203]. Wang
et al. evaluated the modification of Au NPs with thiol or
amine groups to decorate different densities of phenyl-
boronic acid to fabricate Gram-selective antibacterial agents.
They observed that modified Au NPs with amine- or thiol-
tethered phenylboronic acids can effectively interact with
lipopolysaccharide (LPS) and lipoteichoic acid (LTA), as
Gram-positive and Gram-negative compounds, respectively.
Also, tunable ratios of thiol- and amine-tethered phenyl-
boronic acids lead to different antibacterial activity [204].
Heo et al. assessed the effects of Au NPs on osteoblast differ-
entiation. From in vitro and in vivo tests, they observed an
increase in mRNA expression of osteogenic differentiation-
specific genes and good bone formation on the Ti surface,
respectively [205].

4.1.6 Iron (Fe3+)

Iron oxide (FexOx) has proven its capability as a dental
coating. Primarily, magnetite (Fe3O4) and maghemite
(Fe2O3, y-Fe2O3) are the two most popular forms of iron
oxide NPs without further cytotoxicity [206]. Most FexOx-
derived NPs in biomedicine possess superparamagnetic
properties [207]. For example, Fe2O3-superparamagnetic
can improve osteoblast functions and help to eliminate
the formed biofilms [208]. Generally, iron oxide NPs are
able to interact with exopolymers that are generated by
bacteria and are difficult to be eradicated by many anti-
biotics and immune cells as they are impenetrable [209].

Thukkaram et al. evaluated the efficacy of varying
concentrations of iron oxide NPs against biofilm forma-
tion on different biomaterials. The optimal effectiveness
was obtained at a concentration of 0.15 mg/mL against
S. aureus, E. coli, and P. aeruginosa bacteria [210]. In addi-
tion to biocide activity, iron oxide NPs possess magnetic
properties that displayed higher stability and safety than
other commonly used NPs. The cytotoxicity and inflam-
matory responses of these NPs are highly dependent on
concentration rather than size, which could be exploited
for designing new drug carriers [211].

4.1.7 Copper (Cu2+)

Copper oxide (CuxOx) NPs have unique physical, chemical,
and biological properties that expand their medical applica-
tions. Similar to Ag, CuO-derived NPs displayed excellent
antibacterial activity. However, the utilization of suchmetallic
ions was restricted as their adverse effects were induced by
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remaining residues [212]. In addition to being antibacterial,
CuxOx NPs possess antifungal, antibiofilm, and antimicrobial
activities [21]. The antibacterial mechanism of these NPs is
based on passing through nano-mimic pores on the bacteria
cell membrane and disturbing their biological activity by
damaging the vital enzymes. This progress is highly depen-
dent on the size, stability, and the concentration of NPs in
the medium [213].

Likewise, antimicrobial activity is the result of the
generation of ROS, which increases the oxidative stress
of the cells [214]. Rosenbaum et al. coated CuO-derived
NPs on the TiO2 surface and have not found a sign of S.
aureus and E. coli bacteria [215,216]. Liu et al. included
copper in the Ti alloy composition and observed signifi-
cant activity against Streptococcus mutans (S. mutans)
and P. gingivalis [217]. Khan et al. evaluated the inhibitory
effect of CuxOx NPs within a size of 40 nm to prevent
biofilm formation. In vitro results revealed that a concen-
tration of 50mg/mL can successfully prevent the devel-
opment of oral bacteria and their polysaccharides [218].

4.1.8 Zinc (Zn2+)

Recently, zinc oxide (ZnO) NPs have become an attractive
candidate as a biologically active ion that promote osteo-
integration and restrict the adhesion of bacteria [219,220].
The general bactericidal mechanism of ZnO NPs consists of
a combination of (i) generation of H2O2 and (ii) formation
of electrostatic interaction that accumulates ZnO NPs on
the bacteria cell membrane, (iii) generation of ROS that
leads to the release of Zn2+ ions, and ultimately, dysfunc-
tioning the cell membrane [213]. This progress is applic-
able against both Gram-positive and Gram-negative
bacteria [213,221]. Hu et al. coated ZnO NPs on the TiO2

surface and restricted the growth of S. aureus and E. coli
bacteria [222]. Similarly, Luo et al. fabricated ZnO@ZnS
nanorod-array and optimized the release rate of Zn2+

ions that demonstrated higher bactericidal activity against
S. aureus and E. coli bacteria [223]. Tabrez Khan et al.
assessed the inhibitory function of ZnO NPs against bio-
film-forming bacteria and colonizers. They observed that
ZnO is able to provide significant bactericidal activity on
different surfaces [218].

4.1.9 Magnesium (Mg2+)

Magnesium (Mg) is an attractive metal that can be fully
adsorbed without acute toxicity. Physically, Mg possesses
similar parameters to the human bone but, chemically, it

has a limited range of applications that is mainly the
result of its high rate of degradation. This high interac-
tion of Mg2+ ion is attributed to the chloride ion (Cl−)
available in ECM that forms the MgCl2 compound [224].
In general, the presence of Mg2+ ion promotes prolifera-
tion and differentiation of osteoblast cells [225]. Also, mag-
nesium oxide (MgO) possesses good bactericidal activity
with the mechanism of disturbing the bacteria cell mem-
brane, which leads to leakage of intracellular contents and
ultimately cell death [226,227]. To control the release rate
of Mg2+ ions, simply compounding it with other materials
cannot increase its corrosion resistance. For example,
magnesium phosphates (MgPs) demonstrated higher in
vivo adsorption than the calcium phosphate (CaP) com-
pounds [228]. Kishen et al. compared the antimicrobial
activity of MgO, sodium hypochlorite (NaOCl), and chit-
osan NPs. They concluded that both MgO and chitosan
NPs have comparable or superior bactericidal activity
than NaOCl against E. faecalis bacteria [229].

4.1.10 Silver (Ag+)

Of the most practical antimicrobial coatings, AgNPs have
been taking the lead. In retrospect, the high release of
Ag+ ions from the implant surface would disturb the
normal biological activities, but AgNPs at low doses dis-
played high biocompatibility and antibacterial activity
with no sign of cytotoxicity, genotoxicity as well as
side-effects [177,230]. The utilization of Ag+ ions was in
the form of silver nitrate (AgNO3), silver sulfadiazine
(C10H9AgN4O2S), silver chloride (AgCl), and pure metal
that could exterminate a wide spectrum of both Gram-
positive and Gram-negative bacteria. However, AgNPs
demonstrated higher antimicrobial efficacy than the
aforementioned forms [231]. Ag at the nanoscale can
facilitate the formation of holes onto the bacteria cell
membrane and result in cell death [232]. This mechanism
is attributed to the interaction of AgNPs with disulfide or
sulfhydryl groups of enzymes [233]. In recent research
works, the fabrication of Ag-based composite NPs has
been widely seen. Choi et al. fabricated PDA and AgNPs
on the Ti surface. They observed lower colonization of
S. mutans and P. gingivalismicrobes with a coating of these
NPs than uncoated Ti [234,235]. Gunputh et al. coated AgNPs
on the TiO2 nanotube surface with and without a top coating
of HAp NPs to evaluate its biocide activity against S. aureus
microbe. In vitro results revealed that AgNPs could effec-
tively reduce the presence of the microbe. Also, the
addition of HAp did not improve the biocidal function
but it could diminish the release rate of Ag+ ions [236].

658  Mohammadmahdi Akbari Edgahi et al.



4.1.11 Selenium (Se2−)

Selenium (Se) NPs are unique elements with high bio-
cidal potential against bacteria, viruses, and cancer cells.
Se2− ions are a vital element in biological processes that
control the elimination of ROS and modulation of a spe-
cific enzyme that lacks its increased susceptibility to viral
infections [237,238]. Nanoscale Se exhibits a reduced risk
of toxicity than its other forms like selenomethionine
(SeMet) [239]. Therefore, the utilization of SeNPs as che-
mopreventive and chemotherapeutic coatings with both
antibacterial and antiviral activity became attractive
[240–243]. Moreover, SeNPs have proven to possess
high bactericidal activity against S. aureus and Staphy-
lococcus epidermidis (S. epidermidis) bacteria, which are
the main cause of implant failure [244,245]. Srivastava
et al. examined different concentrations of SeNPs to
eliminate various bacteria. They found that at concen-
trations of 100, 100, 100, and 250 µg/mL, these NPs
can kill 99% of Pseudomonas aeruginosa (P. aerugi-
nosa), S. aureus, Streptococcus pyogenes (S. pyogenes),
and E. coli, respectively [246].

4.2 Ceramic-based coatings

4.2.1 Bioinert ceramics

4.2.1.1 Zirconium (Zr4+)

The utilization of zirconia (ZrO2) NPs in dentistry has
been expanding since these NPs displayed great potential
in improving the physicochemical properties of different
compounds. Zirconia is a bioinert ceramic with low toxi-
city. Also, it cannot dissolve in water, which causes less
adhesion of bacteria [247]. Zirconia-based NPs demon-
strated antimicrobial activity against some microorgan-
isms like E. faecalis [248]. In terms of biogenicity, ZrO2

NPs promote the attachment and proliferation of osteo-
blast and fibroblast cells and release nontoxic ions
[249–252]. However, compared to Ti, ZrO2 NPs are at
disadvantage to promote cell viability [253]. Huang et al.
coated ZrO2 NPs on the Ti implant via the PS technique.
After 2 weeks, the in vivo test showed a higher level of
osteoblast cells that was attributed to the theory that
adhesion of osteoblast cells can be promoted by higher
free-energy surface [136,254].

4.2.2 Bioactive ceramics

4.2.2.1 Bioactive glass

Bioactive glasses (BGs)mainly refer to the mixture of silica,
calcium oxide (CaO), sodium oxide (Na2O), and phos-
phorous pentoxide (P2O5) as silicate-based compounds
[255,256]. BGs compared to other bioglasses (e.g., borate-
based glass or phosphate-based glass), or ceramic glasses,
have a higher potential to merge with the host tissue
[257–259]. Moreover, manifold elements can be doped
with BGs to modify their properties, for example, utiliza-
tion of Na+,Mg2+, Al3+, Ti4+, or Ta5+ ions can reduce or increase
the solubility as well as Ag+, strontium (Sr2+), or Zn2+ for mod-
ifying bactericidal activity, cellular viability, or anti-inflamma-
tory responses of BGs, respectively [257,260,261]. Kalantari
et al. evaluated the synthesis and osteogenic applications
of monticellite for bone tissue engineering and compared
its biological activity with HAp. They concluded that mon-
ticellite has a higher bone formation than HAp and it also
provides minor antibacterial activity due to the presence of
Si4+ ions in its components [262–267].

4.2.3 Biodegradable ceramics

Biodegradable ceramics refer to calcium-derived com-
pounds (CDCs), mainly calcium phosphate (CaP)-based
materials including α/β-TCP, tetracalcium phosphate (TTCP)
[Ca4(PO4)2O], and hydroxyapatite (HAp) [Ca10(PO4)6(OH)2],
which have above 1.5 Ca:P ratio [21,268]. These CDCs by con-
taining similar components as natural bone demonstrated
remarkable cellular affinity that subsequently promotes the
osteogenic cells anchorage and higher osteoconductivity and
osteointegration [269,270]. Schouten et al. compared the in
vivo biological activity of the Ti surface with and without
the utilization of CaP coatings. The results showed that the
presence of the CaP compound on the implant site increased
the bone healing process and led to higher osteointegration
[271]. However, the controversial parameter of these CDCs
is their low solubility. Okuda et al. evaluated the adsorption
of rod-shaped particles of HAp in the rabbit femur. They
observed that 24 weeks after implantation, 80% of HAp
remained and after 72 weeks, although most of the HAp
was resorbed, still the presence of HAp around the implanta-
tion site could be detected [272]. Therefore, synthesizing the
biphasic CDCs with different combining ratios may be an
optimal solution to control their degradation rates [273].
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Despite the broad uses of CDCs, still, the challenges
of fabricating an ideal compound for bone restorative
applications remain. Hence, the utilization of multifunc-
tionalized compounds tends to be a reasonable answer to
fulfill the demands for this purpose. Immobilizing growth
factors or peptides as a guiding cell behavior have been
conducted, yet their fast denaturation is their main draw-
back [274–278]. Bisphosphonates (BPs), such as alendro-
nate and zoledronate, are other molecules that have been
widely used as medicine to treat bone metabolic disor-
ders. BPs are used to prevent osteoclastogenesis, a feature
that helps to cure osteoporosis or Paget’s disease [279].
Other interesting molecules that contribute to several trans-
duction pathways are glycosaminoglycans (GAGs). The
family of GAGs including hyaluronic acid (HA), heparin,
heparan, chondroitin, and keratin sulfates, are ubiquitous
molecules that exist in the stem cells niche and ECM, and
they have a high affinity for growth factors and proteins
[280–287]. GAGs’ family displayed a significant impact on
regenerative progress in various cell lineages like the
immune system, fibroblast, endothelial, and skeletal cells
[280,288,289]. Recent studies have led to the utilization of
PDA, a catechol-containing biomimetic molecule. PDA
demonstrated a notable impact on bone mineralization
via concentrating Ca2+ ions at the interface. Yong et al.
deposited PDA-assisted HAp on porous Ti scaffold. In vitro
tests revealed that such coating can promote proliferation,
attachment, and bioactivity by inducing ALP expression in
MC3T3-E1 cells [290]. However, assimilating to osteogenic
cells, CDCs also allow bacteria to colonize and increase the
risk of failure. To overcome this problem, CDCs are usually
accompanied by an antibacterial agent to acquire a bio-
cidal function [291,292].

In addition to CaP-based materials, there are CaP-
based salts like calcium sulfate (CaSO4) and calcium car-
bonate (CaCO3) that have been extensively used in clinical
applications. Ohgushi et al. examined the bone-forming
responses of Ti surface coated with CaCO3. They concluded
that CaCO3 demonstrated considerable potential in bone
restorative applications, which can be compared with
similar compounds like HAp [293].

4.3 Polymer-based coatings

4.3.1 Chitosan

Chitosan is a natural polymer with vast applications in
medicine. Chitosan is a cationic polysaccharide that is
derived from the deacetylation of chitin [294]. Chitosan pos-
sesses remarkable properties consisting of antimicrobial,

antiviral, antifungal, antitumor, immunoadjuvant, anti-throm-
bogenic, and anti-cholesteremic [295]. The antibacterial
mechanism of chitosan NPs is attributed to the principle
of electrostatic interaction and result in the dysfunctioning
cell membrane, increase in permeability, and ultimately
cell death [296]. A combination of chitosan with other
materials can overcome different bacteria growth. Divakar
et al. fabricated Ag-conjugated chitosan NPs for promoting
bioactivity of Ti surfaces. The results demonstrated that
NPs successfully restricted the growth, adhesion, and bio-
film formation of S.mutans and P.gingivalis bacteria
[297,298]. Palla-Rubio et al. coated hybrid silica-chit-
osan NPs on Ti implants and reported that 5–10% con-
centration of chitosan is suitable for obtaining sufficient
bactericidal efficacy [299].

4.3.2 Peptides

Peptides coating on the implant surface is a recent pro-
cedure to increase bioactivity. Antimicrobial peptides
(AMPs) with tailored heads are able to be physically
adsorbed or chemically bonded to the surface. This coating
mechanism is based on the production of AMPs from the
host’s proteins and reusing them affords low toxicity and
bacterial resistance [300]. These peptides cover a broad
spectrum of pathogens, including both Gram-negative
and Gram-positive bacteria [301]. Herein, a wide range
of AMP families has proven their antimicrobial activity
that consists of lactoferrin 1–11 (LF1–11), alpha-defen-
sins (ADs), beta-defensins (BDs), histatin, adrenome-
dullin, cathelicidins, GL13K, Pac-525, KSL, and LL-37
[302–308]. Godoy-Gallardo et al. examined the biofunc-
tion of hLF1–11 on the Ti surface. In vitro results demon-
strated a satisfactory reduction in adherence and biofilm
formation of S. sanguinis and Lactobacillus salivarius
(L. salivarius) bacteria in the early stage [309,310].

4.4 Carbon-based coatings

Recently, carbon-based coatings (CBCs)have shown remark-
able applications in dentistry. These materials with strong
C–C bonds demonstrated excellent physical properties such
as notable hardness, high thermal conductivity, and optical
transparency for the surface. In this term, nanocrystalline
diamond (NCD), graphene and its family, and carbon nano-
tubes are the most frequently used CBCs on endosseous
implant bodies. Coating the implant surface with NCD pro-
vides a smooth surface with significant corrosion resistance,
which is a favorable surface for preventing bacterial
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colonization [21]. Moreover, these NPs are capable of anti-
oxidant and anticarcinogenic properties [311].

Graphene and GFNs consist of a single layer form of
carbon atoms and have a high surface area. Graphene
with its honeycomb lattice shape covers the surface of
implants and possesses impermeability. This ability can
effectively reduce the corrosion rate and biofilm of dental
implants [312,313]. Such physiobiological activities can
be shared with GFNs like GO and graphene nanoplatelets.
In addition to graphene, CNTs provide notable physio-
chemical characteristics in terms of biocide, biogenic,
and drug carrier functions. The hollow cylindrical shape
of CNTs is an appropriate surface for osteoblast cells’
anchorage while it can also rupture the bacteria cell
membrane. Metzler et al. evaluated the osteointegration
of NCD on Ti grade-5 implant. After 5 months, the in vivo
results showed sufficient osteointegration [314]. Rago et al.
investigated the antibacterial mechanism of graphene
nanoplatelets against microorganisms. They found that
the strong mechanical bonds between the layers of the
graphene nanoplatelet lead to trapping bacteria cells and
ultimately result in cell death [315]. Hu et al. evaluated
the bactericidal efficacy of GO against certain bacteria.
They observed that GO could significantly reduce the level
of S. mutans bacteria [316]. However, a few documents
regarding CBCs restrict their potential as an independent
coating.

4.5 Protein-based coatings

4.5.1 Extracellular matrix proteins

Deposition of ECM proteins on the implant surface is a
promising approach to facilitate the adhesion of osteo-
genic proteins. In general, the immobilization of ECM
proteins leads to the promotion of bone healing and
osteointegration. Hence, several proteins and biomole-
cules exist in the ECM and demonstrate biological activ-
ities in bone restorative applications that consist of
collagens, osteopontin, pectin, cytokine, laminin, elastin,
hyaluronan, insulin, fibrinogen, glycans, proteoglycans,
poly(amino-acids), sialoprotein, fatty acids, sugars, etc.
[317]. Among them, collagens attracted considerable atten-
tion as they have the potential to improve the attachment,
proliferation, and differentiation of osteoblast and human
MSCs [318]. Saadatmand et al. evaluated the collagen-
chondroitin sulfate (CCS) and collagen-sulfated hyalur-
onan (CSH) coatings on a screw-type Ti implant in a
minipig model. From in vivo results, they found that the

bone formation in both coatings was greater than the
uncoated control following 8 weeks [319].

4.5.2 Growth factors

Vascular endothelial growth factor (VEGF) and bone mor-
phogenetic proteins (BMPs) are used in the coating. The
first has the signaling function that involves vasculogen-
esis and angiogenesis. The latter is a family of growth
factors, especially in the formation of bone and cartilage.
This family can improve the regulation of osteogenic cells
and the differentiation of MSCs [320]. Moreover, recom-
binant human BMPs (rhBMPs) like rhBMP-2 and rhBMP-7
have been used for therapeutic applications [321]. Guang
et al. evaluated the biological activities of VEGF on pri-
mary rat osteoblast cells. They observed that VEGF can
increase the activity of ALP, gene and protein expression
of vasculogenesis, and proliferation of osteoblast cells
[322]. Faßbender et al. modified the release rate of BMP-2
by optimizing the thickness of gentamicin-loaded poly(D,L-
lactide-acid) (PDLLA). They concluded that sustained
release was achieved after initial healing with a notable
increase in the stiffness and ratio of bone volume to total
volume at day 42, and also, higher mineralization was
achieved after the 42nd day until the 84th day [323].
Al-Jarsha et al. fabricated BMP7-loaded poly(ethyl-acry-
late) (PEA) on Ti surface. The results revealed that a low
concentration of BMP-7 is able to optimize osteointegra-
tion via establishing a specific delivery system [324].

4.6 Drug-based coatings

Drug-based coatings are of the most practical procedures
to combat high infections with multifactorial, complex,
and hard-to-manage characteristics. Antibiotic drugs dis-
played higher efficacy against a broad spectrum of both
Gram-positive and Gram-negative bacteria. Coating drugs
on the implant surface usually occurs via indirect ways
like using drug carriers with different biophysiochemical
characteristics and release mechanisms (Figure 23). Herein,
the frequently used antibiotic includes amoxicillin, doxycy-
cline (DOX), tetracycline, polydopamine (PDA), cefotaxime,
quercitrin, chlorhexidine (CHX), gentamycin, norfloxacin,
and vancomycin.

Bottino et al. examined the biocidal activity of new
antibiotic, tetracycline-containing fibers, for dental applica-
tions. Not only did they restrict the biofilm formation and
progression of peri-implantitis, but also they reduced the
colonization of bacteria including P. gingivalis, F. nucleatum,
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Prevotella intermedia (P. intermedia), and A. actinomycetem-
comitans at different concentrations [325,326]. Gomez-
Florit et al. evaluated the anti-inflammatory effect and soft
tissue regeneration of quercitrin coated on the Ti surface.
For these tests, they used human gingival fibroblasts and
interleukin-1-beta (IL-1β) to mimic the situations. The
results revealed that quercitrin can increase the attach-
ment of fibroblasts cells and also reduce the level of matrix
metalloproteinase-1 (MMP-1), which led to increasing
mRNA, and also pro-inflammatory prostaglandin-E2 (PGE2)
under both inflammatory and basal conditions [327].
Researchers coated vancomycin-loaded silica films on
the Ti surface by the sol–gel technique. The results showed
a reduction in the release rate of vancomycin and adherence
of S. aureus bacteria [70,328,329]. Ding et al. coated DOX-
treated HAp on the Ti surface and from in vivo tests they
observed that DOX could reduce the progression of peri-
implantitis [330]. Also, by adjusting the environment
pH, the release rate of DOX-loaded poly(lactide-co-gly-
colic-acid) (PLGA) can be controlled [331]. Wood et al.
evaluated the inhibitory function of CHX coated on TiO2

surface against Streptococcus gordonii (S. gordonii)
bacteria. CHX demonstrated a successful reduction of
S. gordonii but it had a high release rate and could only
sustain for a short period [230]. Kazek et al. loaded amox-
icillin in PLGA for evaluating its antibacterial activity on
the Ti surface. Such coatings revealed successful inhibi-
tory activity against S. aureus and S. epidermidis in the first
few hours [332]. Rojas-Montoya et al. controlled the release

rate of norfloxacin by changing the phases of CaP com-
pounds in the synthesis process. They fabricated a rod-like
nanostructure with fast desorption within the first 8 h and
gradually reduced it until 32 h [333]. Lucke et al. fabricated
PDLLA to reduce bone and soft-tissue infection. They con-
cluded that 10% gentamicin-loaded PDLLA can signifi-
cantly reduce the level of S. aureus bacteria in rat models
[334]. He et al. assessed the effectiveness of cefotaxime
sodium immobilized on the PDA-coated Ti surface. The
results showed that this coating restricted the growth
and adhesion of both E. coli and S. mutans as Gram-nega-
tive and Gram-positive bacteria, respectively. The addition
of cefotaxime sodium could keep the antibacterial function
for a longer period [96].

5 Drug delivery systems (DDSs)
In recent developments, the use of DDSs in implant coat-
ings has attracted the attention of the scientific community.
Drug delivery refers to the approaches in transporting and
increasing the concentration of therapeutic compounds to
the target tissue. Generally, DDS according to the release
mechanism is classified as passive or active targeting.
Passive targeting refers to the biophysiochemical properties
of the delivery system with no affinity for ligands. However,
active targeting is the enhanced version of passive targeting
in which the release mechanism is determined by an inside
or outside inducer. For evaluating a delivery system, three
major factors can influence the drug release kinetics that
includes the external environment, payload property, and
material matrix. In designing a DDS, it should be taken into
account that (i) short-term antibacterial drugs are utilized
for immediate acute infection, (ii) long-term antibacterial
drugs are utilized for preventing bacteria colonization, and
(iii) in both cases, drugs should not include alternation in
surface materials [32,335].

As mentioned above, drug release kinetics can be
determined by the drug release mechanism. The DDS
occurs through four main categories and their subcate-
gories including (i) diffusion-controlled as (a) reservoirs
and (b) matrices, (ii) chemically controlled as (a) biode-
gradation and (b) chemical cleavage, (iii) solvent-con-
trolled, and (iv) pH-sensitive. Also, physiochemical and
biological mechanisms like diffusion, osmosis, swelling,
portioning, dissolution, targeting, and molecular interac-
tion follow these categories [336]. Herein, the challenge is
to design a DDS with the selectivity of a therapeutic drug

Figure 23: Schematic illustration of different carrier-based drug-
releasing biomaterials [23]. Copyright 2020, MDPI.
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to the target site and an optimal release mechanism in
the desired manner. For this purpose, soluble polymers,
enzymatically degradable, and pH-responsive DDSs dis-
played a successful controlled release.

5.1 Material matrix

Of major parameters to obtain the optimal drug release is
to design a specific drug systemusing biomaterials. Generally,
themodification of the implant surface occurs via biochemical
approaches including physisorption, covalent bonding, or
carrier systems [337]. Physisorption refers to the direct coating
and adsorption of therapeutic drugs by controlling the surface
topography. Covalent binding refers to the immobilization
of therapeutic drugs on the implant surface via the utiliza-
tion of spacers like hydroxyl (–OH) or amine (–NH) groups.
Covalent bonding is a suitable approach for coating cell-
adhesive proteins including osteopontin, collagen, vitro-
nectin, or fibronectin. Carrier systems refer to the utilization
of biomaterials mainly ceramic-based and polymer-based
materials for entrapping therapeutic drugs and releasing
them over a controlled period. The release of therapeutic
drugs in the adjacent environment of an implant using car-
rier systems occurs via degradation, diffusion, or osmolality
mechanisms. Herein, synthetic biodegradable polymers,
CaP-based compounds, and bioactive glasses due to their
biocompatibility and degradability are the best choices for
DDSs [338,339]. Biodegradable polymers are composed of
various synthetic and natural polymers with unique charac-
teristics. Polymers depending on their scale provide different
advantages and disadvantages. However, it is not possible to
use macro- or microsized polymers as DDSs due to their
nonbiodegradability or limited cellular uptake. Therefore,
restrained applications of large polymers increase the
interest in NP-based drug systems. NP-based drug systems
as implant coatings are in the form of nanoporous bioma-
terials, polymeric systems, and hydrogels [340]. The bio-
physiochemical characteristics of these carriers should be
engineered to grant the optimum results for possible ther-
apeutic drugs for bone restorative applications [341].

To design a delivery system, several parameters of
drug molecules should be considered. On top of them,
solubility is the prior factor as it can influence both mate-
rial matrix and external environment, and is the main
parameter in the release mechanisms of implant coatings.
Hence, to obtain the favorable carrier system with a desir-
able level of hydrophilicity the utilization of copolymeriza-
tionofdifferentpolymers likePLGA,biphasicCaPcompounds,
and BGs-doped compounds, are highlighted [23].

6 Essential parameters

6.1 Roughness

Surface roughness is one of the key factors in designing
an implant. Microroughness was fully explored and con-
firmed as the better surface for the anchorage of osteo-
blast cells and primary stability [342,343]. However, most
commercial dental implant manufacturers tend to have a
smoother surface with a Ra of 0.5–1 µm [33,344–346].
Selecting this range of roughness is attributed to cell pre-
ference, which Yang et al. observed that human bone-
marrow MSCs have optimal differentiation on Hap-coated
Ti surfaces with Ra of 0.77–1.09 µm and mean distances
between peaks (RSm) of 53.9–39.3 µm [347]. By the entering
of roughness at the nanoscale, implant surfaces have gone
through dramatic changes (Figure 24). Nanoroughness can
promote protein adsorption, osteoblast cell attachment,
and growth factor incorporation [9]. Moreover, gene expres-
sion can be influenced by surface roughness, and several
parameters such as the production of growth factors, cyto-
kines, and the response of the adjacent skeletal have a sig-
nificant impact on the success of an implant [348]. Chen
et al. observed that nanoroughness with Ra of 71.0 ± 11.0 nm
can support more induction of osteogenic genes such as
osteopontin (OPN), BMP-2, and runt-related transcription factor
(RUNX2). Also, nanoroughness with a Ra of 14.3 ± 2.5 nm
demonstrated higher expression of other osteogenic genes
like collagen type 1 (COL1A1) and osteocalcin (OCN) [349].
Similarly, fibroblast cells adhere more to smooth surfaces.
On the contrary, osteoblast cells proliferation and collagen
synthesis tend to be higher on moderate roughness but
epithelial cells and ECM molecules adsorption have been
reported to be greater on rough surfaces [134,350–353].
The enhancement of protein adsorption is mainly affected
by increasing the surface area on nanoroughness, which
facilitates cell attachment, and subsequently, promotes
osteointegration andmechanical bonding [354,355]. Despite
all research done on the behavior of cells, there are no
general rules for optimum surface roughness and further
investigation is required.

6.2 Wettability

Wettability refers to the degree of hydrophilicity or hydro-
phobicity of the surface that is attributed to the result of
surface chemistry [356]. To find the wettability, the CA
between the interface of the droplet and the horizontal
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surface is measured. When the measured CA is <90°, the
outcome surface is hydrophilic and above 90° it is hydro-
phobic. Hydrophilic surfaces at nanoscale demonstrated
better interactions with the biological environment, which

indicates biocompatibility as well as high surface energy
(Figure 25) [356,357]. D’Elía et al. examined the wettability
of Hap-coated surfaces with macro-, micro-, and nano-
roughness under controlled conditions. They used rat

Figure 24: Schematic illustration of the three levels of interactions between the bone and implant. At the macroscale level, the implant
supplies acceptable mechanical stability to the bone. At the micro/ submicroscales, the implant is able to directly interact with osteoblasts
and MSCs. At the nanoscale, cell membrane receptors, such as integrins, can recognize proteins adsorbed on the surface, which in turn are
modulated by the nanostructures on the surface [342]. Copyright 2014, Elsevier™.

Figure 25: Schematic illustration of possible interactions at three levels of a (a) hydrophilic and (b) hydrophobic surface. (a) Hydrophilic surface
allows direct interaction with biological fluids and subsequent cell membrane receptors. (b) Hydrophobic surface is prone to hydrocarbon
contamination that results in the entrapment of air bubbles and interference with the biological environment [356]. Copyright 2014, Elsevier™.
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osteoblasts and MSCs to test the surfaces and reported
different states of physisorbed H2O molecules on their sur-
face [156]. Likewise, Hotchkiss et al. investigated the effect
of immune cells on different wettability and micro- and
nanoroughness surfaces. After culturing macrophages on
a smooth Ti surface, it displayed an increase in the level of
interleukins IL-1β, IL-6, and TNF-α, which result in inflam-
mation. However, macrophages on the rough hydrophilic
Ti surface increased interleukins IL-4 and IL-10, which
activate the anti-inflammatory M2-like state of the macro-
phage [358]. Thus, there is no standard measurement for
wettability to predict cellular behavior and it demands
further investigation.

6.3 Charge

Generally, the surface charge indicates the interaction
between the implant surface with its environment mole-
cules, which leads to the reduction of bioactivity of the
surface. This reduction has a significant impact on wett-
ability, and subsequently, cellular responses that cause
fewer bindings with useful ions and proteins [359–361]. By
positively charging the surface, protein localization and bio-
logical responses can be influenced [362,363]. In terms of
surface charge, limited research studies have evaluated its
necessities but extended studies investigated the concept of
decontamination utilizing techniques such as radio frequency
glow-discharge (RFGD), photofunctionalization using ultra-
violet A (UV-A), and ultraviolet C (UV-C) [360,364–366].
Decontaminating the implant results in the generation of a
superhydrophilic surface but this reduction in CA is unstable
and dramatically increases [367]. However, Rupp et al. eval-
uated nanocrystalline anatase coated on the Ti surface via the
reactive pulse magnetron sputtering (RPMG) technique and
fabricated a superhydrophilic surface with CA < 5° in 75 s.
They claimed that according to the fast hydrophilization
and slow re-hydrophobization, such a surface treatment has
adequate potential for clinical applications [368]. Therefore,
considering the significant period between production and
implantation of an implant, more investigations regarding
the sustainability of the surface charge and applicable pro-
cesses are recommended.

7 Conclusion and outlook

In this review, we organize various aspects of a dental
implant from the perspective of nanotechnology. Based
on the results, we found that there is no gold standard for

modifying an implant because the success rate depends
on many parameters such as the patients’ general condi-
tion. Nevertheless, the outcomes of cutting-edge tech-
nology such as nano-topographies, nanoparticles, and
nanodelivery systems demonstrated higher biophysio-
chemical activities that directly affect the success rate
of dental implants. Hence, we provide sufficient pieces
of information for researchers to give them a better
understanding of nanotechnology in dentistry.

In general, implant failure is associated with inadequate
osteointegration that may be exacerbated by microbial infec-
tion. Therefore, the combination of long-lasting features such
as nanotopographies and NPs may be considered as an ideal
modification for the next generation of dental implants.
Nanotopography has brought the insight that antibacterial
activities cannot be limited to chemical interactions, and
nanopatterns with specific geometries can also reduce or
abolish bacteria. In this case, dominating the fabrication
process is the key factor for producing the optimal geome-
tries. However, a few reports on this issue restrict their poten-
tial as an independent modification. Thus, the use of mani-
fold NPs with different biocidal and osteogenic functions as
well as engineered delivery systems is more highlighted.
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