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A B S T R A C T   

Diabetes epidemiological quantities are demonstrating one of the most important communities' health worries. 
The essential diabetic difficulties are including cardiomyopathy, nephropathy, inflammation, and retinopathy. 
Despite developments in glucose decreasing treatments and drugs, these diabetic complications are still inef-
fectively reversed or prohibited. Several signaling and molecular pathways are vital targets in the new therapies 
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Molecular pharmacology 
Targets 

of diabetes. This review assesses the newest researches about the key molecules and signaling pathways as targets 
of molecular pharmacology in diabetes and diseases related to it for better treatment based on molecular sci-
ences. The disease is not cured by current pharmacological strategies for type 2 diabetes. While several drug 
combinations are accessible that can efficiently modulate glycemia and mitigate long-term complications, these 
agents do not reverse pathogenesis, and in practice, they are not established to modify the patient's specific 
molecular profiling. Therapeutic companies have benefited from human genetics. Genome exploration, which is 
agnostic to the information that exists, has revealed tens of loci that impact glycemic modulation. The physio-
logical report has begun to examine subtypes of diseases, illustrate heterogeneity and propose biochemical 
therapeutic pathways.   

1. Introduction 

Diabetes is a progressive chronic condition with a high and rapidly 
growing occurrence; by 2030, the worldwide prevalence of diabetes is 
estimated to exceed 10.2% [1]. The progressive diabetes characteristic 
will cause vascular problems, such as cardiovascular and kidney sick-
nesses, particularly nephropathy, cardiomyopathy, and other diffi-
culties, including cancer, neurodegenerative problems, and retinopathy 
[2–4]. The reduced life quality of diabetic patients and the disease's 
social and economic impact highlight the necessity to identify the 
causative factors of diabetes, which will eventually lead to the devel-
opment of novel diabetes therapies [5]. The signaling and molecular 
pathways are the vital targets in the new therapies of diabetes. This 
review investigates the newest research about the key molecules and 
signal pathways as molecular pharmacology targets in diabetes and its 
diseases. 

2. Molecular targets in cardiovascular and cardiomyopathy 
complications 

A growing number of people are affected by diabetes and its vascular 
complications. This now-epidemic disease includes defects in both small 
and large blood vessels, both of which begin with changes in endothelial 
cell (EC) activities. Diabetic patients' cardiovascular disorders are a 
leading cause of death and disability. The pathological rise in glucose 
and the presence of advanced glycation end products (AGE) connected 
to plasma proteins, including lipoproteins, cause EC dysfunction (ECD) 
in diabetes. AGE proteins bind to particular receptors on the EC lipid 
bilayer, causing signaling pathways to be activated, resulting in reduced 
nitric oxide biocompatibility, enhanced intracellular oxidative and in-
flammatory stress, and ultimately EC disruption and apoptosis. In vitro, 
anti-oxidant substances were found to be effective in alleviating ECD. 
Unfortunately, intracellular anti-oxidants declined to boost the oxida-
tive status and HDL activity, affecting HDL's protective effect in EC. 

2.1. PPAR-related pathways in diabetic cardiomyopathy pathogenesis 

The use of the gene-editing technique [CRISPR/(d)-CAS9] in vivo to 
regulate gene expression related to intracellular anti-oxidant proteins, 
especially those linked to HDL, may be an interesting method to expand 
EC function in diabetes in the future [6,7]. Diabetic patients have a 
higher incidence of cardiomyopathy than non-diabetic patients. Many 
molecular proceedings help to the expansion of diabetic cardiomyopa-
thy (DCM), which are involved in the changes in the cell metabolism 
(glucose, fatty acid, branched-chain amino acids, and ketone) and the 
defects of subcellular constituents in the human heart, including 
reduced signaling of insulin, improved inflammation, and oxidative 
stress. A key transcription factor as titled Peroxisome proliferator- 
activated receptor α (PPARα) plays a key role in facilitating DCM- 
related molecular happenings. Pharmacological directing of PPARα 
stimulation is one of the most effective methods for diabetic patients. 
Metformin and glucagon-like peptide-1 (GLP-1) agonists are PPARα- 
associated medications that have confirmed their effectiveness and se-
curity in decreasing glucose and lipid in diabetic individuals throughout 

the clinical investigations [8]. Yes-associated protein (YAP) and Pro 
renin receptor (PRR) are also main proteins in diabetes-related cardio-
vascular diseases. Nevertheless, it has been revealed that PRR–YAP 
pathway can stimulate pathological damages in DCM by starting redox. 
Animal studies are split into three sections to study the effects of the PRR 
facilitated YAP system on the pathogenesis of DCM, such as the effects of 
PRR increased expression, RNAi of PRR silencing, and YAP RNAi sup-
pressing. Ad-PRR-shRNA, Recombinant-adenoviruses-carried-PRR-gene 
(Ad-PRR), and YAP-shRNA carried by lentivirus have been built the 
influence of PRR interceded YAP on the DCM pathogenesis have been 
assessed. The inhibitor of YAP - Verteporfin - has also been directed in 
fibroblasts related to the heart to discover the influence of PRR–YAP way 
on oxidative stress and heart fibrosis. Furthermore, PRR upregulation 
can aggravate oxidative stress as severe and fibrosis of myocardial in 
DCM condition, and these pathological variations can be improved by 
YAP inhibition. Thus, PRR–YAP key pathway has a key role in DCM 
pathogenesis [9]. 

2.2. Inflammatory mechanisms in diabetic complications 

Since inflammatory mechanisms play a role in diabetic complica-
tions, such as atherosclerosis, resolving this chronic inflammation may 
be beneficial. For example, lipoxin A4 (LXA4) is an endogenous 
inflammation facilitator [10]. In diabetic mice, cure with LXA4 factor 
has decreased expression markers related to inflammatory conditions 
such as IL-6 and IL-1β, reducing aortic plaque expansion. Since the drug 
application was atheroprotective in diabetic mice with the proven dis-
ease, this offers pharmacological modulation of inflammation as an 
efficient treatment approach in diabetic cardiovascular events [11]. 

2.3. Protein O-GlcNAcylation in diabetic complications 

The alteration of post-translational of threonine and serine residues 
of molecules by O-linked N-acetylglucosamine (O-GlcNAc) normalizes 
different cellular procedures for the cardiovascular organization. UDP- 
GlcNAc – a key goal of O-GlcNAc transferase- regulates the connection 
of O-GlcNAc to protein molecules. It catalyzes the elimination of O- 
GlcNAc from protein. UDP-GlcNAc is the final material of the biosyn-
thesis process of hexosamine, which is controlled mainly via glucose-6- 
phosphate-Glutamine molecules: the enzyme of fructose-6-phosphate 
amidotransferase (GFAT). GFAT is the catalyzing enzyme of the crea-
tion of glucosamine-6-phosphate from glutamine and fructose-6- phos-
phate. Although O-GlcNAc is crucial for the cell's viability, continued 
improvements in O-GlcNAc rates have been concerned with the etiology 
of several chronic illnesses related to glucose poisonousness and diabetic 
problems in numerous organs specially the heart. Growing cardiac O- 
GlcNAc rates alone may be adequate to summarize the negative diabetic 
properties on the heart, according to a limited but rising number of 
studies; but a lessening of O-GlcNAc in the diabetes situation reduces 
these special effects, increases cardiac and vascular act. Therefore, 
directing O-GlcNAc rates as a therapeutic method for handling diabetic 
difficulties is possibly a fascinating subject [12–15]. 
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2.4. Role of reactive oxygen species (ROS) in development of diabetes 

Oxidative stress is one of the main (and probably initial) factor that 
helps to the growth and development of diabetes. Strategies to decrease 
the production of Reactive oxygen species (ROS), or increase its degra-
dation, for example with anti-oxidant function, may be a defensive in 
contradiction of diabetes prompted cardiac defect. Particular inhibitors 
or gene-aimed treatment target at either reducing protein-related 
signaling complicated in hypertrophy (e.g., protein kinase C β (PKCβ)) 
or augmenting the expression of cardio-defensive ways (e.g., Phos-
phoinositide 3-kinase (PI3K) (p110α)) may characterize new approaches 
for the management of diabetic cardiomyopathy in treatment [16]. In 
ROS-mediated Endoplasmic reticulum (ER) stress-stimulated myocytes 
apoptotic futures in DCM, the triggering of protein kinase RNA (PKR)- 
similar ER kinase (PERK) signaling molecular pathways take the lead 
instead of inositol-requiring enzyme-1 (IRE1) or stimulating transcrip-
tion factor-6 (ATF6) signaling [17]. 

3. Molecular improvement of wound healing and regulation of 
inflammatory responses in diabetes 

BMP9 (bone morphogenetic protein-9) has been discovered to be a 
new accelerator in the healing of diabetic cutaneous wounds. Patients 
with diabetic foot have slightly lower circulating BMP9 levels, while 
there are no significant discrepancies in serum levels between unaf-
fected patients and patients with diabetes without chronic wounds in 
either type 1 or type 2 diabetes. BMP9 enhances skin repair by directly 
stimulating dermal fibroblasts and keratinocytes via the Smad signaling 

pathway and cytoskeleton remodeling [18]. High-mobility group box 1 
protein (HMGB1) is essential in diabetes and its complications as a 
damage-associated molecular template molecule. The findings show 
that diabetic keratopathy progresses in mice throughout their diabetes, 
with common symptoms such as weakened ocular surfaces and corneal 
nerves. The corneas in diabetes considerably raise expression levels of 
HMGB1 protein and its related receptors—the receptor for advanced 
glycation end materials and toll-like receptor 4 (TLR4). In brief, HMGB1 
and its receptors are highly complicated in the expansion of keratopathy 
in diabetes. This shows that the inhibition of HMGB1 may apply as an 
approach to prompt corneal in diabetes and wound healing related to 
the nerve [19]. 

Molecular targets in diabetic complications have been shown in 
Fig. 1: 

Hesperidin (hesperetin-7-rhamnoglucoside) is a vital plant flavonoid 
plentifully current in a diversity of citrus types such as Citrus aurantium. 
Studies have revealed hesperidin has many biological roles, such as anti- 
inflammatory, anti-diabetic, anti-ulcers, anti-oxidant, antifungal, anti-
viral, hepatoprotective, anti-atherogenic, anti-hypertensive, and anti- 
cancer [20–22]. Treatment with hesperidin enhances wound healing 
in chronic diabetic foot ulcers by upregulating the expression of Trans-
forming growth factor-beta (TGF-β), Small mothers against decap-
entaplegic (Smad-2/3), Vascular endothelial growth factor-c (VEGF-c), 
and Angiopoietin-1 (Ang-1)/Tie-2 mRNAs [23]. It has been confirmed 
that in the human umbilical vein endothelial cells (HUVECs), Cinna-
maldehyde (CA) induces migration, proliferation, and tube creation. CA 
also stimulates the mitogen-activated protein kinase (MAPK) and PI3K 
pathways. Also, the secretion of VEGF from HUVECs is augmented 

Fig. 1. Molecular targets in diabetic complications. Created with Biorender.com.  
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through CA. CA also quickens wound healing in diabetes by prompting 
angiogenesis in the wound zone. This molecule may be used in clinical 
investigations for stimulating beneficial angiogenesis in long-lasting 
diabetic wounds [24]. The suppression of hypoxia-inducible factor-1 
(HIF-1) stimulation by diabetes throughout pulmonary Aspergillosis 
disease is tenacious and helps to a severe inflammatory response with 
fatal significances. HIF-1 induction, both early and long-term, decreases 
inflammatory response and defends diabetic mice against pulmonary 
infection types, signifying an excellent therapeutic plan [25]. HMGB1 
expression is upregulated in the membranes of epi-retinal and vitreous 
liquid from individuals with progressive diabetic retinopathy (DR) and 
in the diabetic retina, which activates inflammatory, apoptotic angio-
genic signaling molecules as well as the break of the blood-retinal bar-
rier in the retina. Hindering the HMGB1 release with continuous 
glycyrrhizin intake decreases diabetes-stimulated high expression of 
angiogenic and inflammatory signaling pathways. Thus, compounds 
hindering HMGB1 may be new helpful agents for diabetic retinopathy 
disease [26,27]. 

4. Molecular pharmacology in diabetes and related diseases 

Endothelial function maintenance as a way of avoiding diabetic 
microangiopathies is a significant therapeutic problem for all health 
systems around the world. Many ways create endothelial dysfunctions 
(ED) in diabetic cases, often cross-talking each other: augmented ROS 
creation, mitochondrial defect, stimulation of polyol way, production of 
AGEs, triggering PKC, endothelial apoptosis, and microRNAs (miRNAs) 
dysregulation. Metformin is a game-changer in the treatment of type 2 
diabetes (T2D). Among these patients, it is still the first-choice medi-
cation. Surprisingly, metformin has been found to have some extra- 
glycemic effects recently, with large preclinical and clinical findings 
supporting its efficiency against ED in T2D. AMP-activated protein ki-
nase (AMPK) pharmacologic stimulation is a key factor, with metformin 
hindering inflammation and improving endothelial dysfunction [28]. 

Rhizoma coptidis (R. coptidis) is a vital herbal drug and has been 
broadly applied to cure diabetes for many years. It has been showing 
that R. coptidis is an antidiabetic agent chiefly via biological procedures 
and pathways, including steroid binding, hormone receptor action, etc. 
In vitro investigates have also presented that its extract hinders 
α-amylase and α -glucosidase and the production of AGEs; temporarily, 
the extract stimulates glucose absorption via adipocytes [29]. Diabetic 
nephropathy (DN) is a typical diabetic problem. In DN patients, the 
Yishen capsule, which is made up of Chinese herbs, helps the clinical 
outcome. Yishen capsule dismisses pathological alterations, declines 
urine protein, augmented the expression of LC3-II, SIRT1, and Beclin-1, 
and decreases acetylated Nuclear expression factor-κB (NF-κB) in vivo. 
Thus, Yishen capsule recovers DN by stimulating autophagy of podo-
cytes by the SIRT1/NF-κB key pathway [30–34]. 

In the diabetic kidney, sodium/glucose cotransporter 2 (SGLT2) in-
hibitors have a significant renoprotective impact. These medications act 
on hypoxia-inducible factors (HIFs; especially, HIF-2α and HIF-1α), 
which may trigger their capability to decrease nephropathy develop-
ment. Renal hypoxia, oxidative stress, and nutrient depletion signaling 
defects are all associated with type 2 diabetes, and they all can activate 
HIF-1α while suppressing HIF-2α. This alteration in the stability of HIF- 
1α/HIF-2α actions stimulates pro-fibrotic and pro-inflammatory path-
ways in glomerular cells. SGLT2 inhibitors reduce renal hypoxia and 
cellular stress while also improving nutrient deficiency signaling, which 
may clarify how they inhibit HIF-1α and activate HIF-2α, boosting 
erythropoiesis while reducing organellar defects, inflammation, and 
high fibrosis. Cobalt chloride, known as a hypoxia mimetic, has a mo-
lecular and cellular profile in the kidney close to SGLT2 blockers. As a 
result, many of SGLT2 inhibitors' renoprotective effects can be due to 
their ability to stimulate the signaling of oxygen deprivation in diabetic 
kidneys [35]. G protein-coupled receptor 120 (GPR120) agonist -TUG- 
891- in DN cases effectually regulates GPR120 high expression and 

decreases TAK1-binding protein expression along with the phosphory-
lation of NF-κB p65, MAPK p38, IKKβ in mice. Reduced expression of 
GPR120 in murine podocyte cells (MPC5) is also producing the con-
flicting properties of TUG-891. Consequently, triggering GPR120 in 
podocytes improves fibrosis and renal inflammation to defend against 
DN [36]. 

Myricitrin (Myr) - a glycosyloxyflavone related to Myrica esculenta 
bark- has shown an important hypoglycemic influence in great fat-fed 
and a particular little-dose streptozotocin-stimulated type 2 diabetic 
(T2D) rats. Myr has also been discovered to recover glucose absorption 
via the skeletal muscle and stimulating insulin receptor substrate-1 (IRS- 
1)/Protein kinase B (PKB or Akt)/PI3K/Glucose transporter type 4 
(GLUT4) signaling pathways in vivo and in vitro. The anti-diabetic drugs 
affecting the PI3K/AkT/PKB signaling pathways have been illustrated in 
Fig. 2. In the kidneys of T2D rats, Myr greatly decreases the toxicity 
caused by high glucose (HG). Myr has also been revealed to decrease 
diabetes-activated renal inflammation through inhibiting NF-κB stimu-
lation. It hinders hyperglycemia-prompted fibrosis and apoptosis in 
renal cells, proven by the alterations in the fibrotic and apoptotic agents' 
expressions. Generally, Myr is a possible therapeutic agent for DN in 
future researches [37]. Several receptors facilitate estrogens' activities in 
the body, such as the conventional nuclear estrogen receptors (ER β and 
α) and the G protein-coupled estrogen receptor (GPER). Via its proper-
ties on metabolic organs, GPER controls fat spreading, body weight, 
homeostasis, and inflammation. In several murine models, GPER's 
agonist, G-1, can relieve indications of obesity and metabolic defect that 
leads to diabetes, reducing insulin resistance and inflammation, and 
refining in vivo glucose homeostasis. So, GPER characterizes a new 
therapeutic goal, with G-1 an initial-in-class beneficial agent in treat-
ment, to cure diabetes [38]. In rats, SCO-792 raises fecal protein and 
enhances glycemic regulation as an enteropeptidase (a gut-decreased 
serine protease controlling protein digestion) blocker. It also reduces 
inflammation, fibrosis, and tubular damage indicators in the kidneys 
while normalizing the high glomerular filtration. Besides that, auto-
phagy function in the glomerulus is increased in SCO-792-cured rats, 
which is decreased in diabetic kidney disease (DKD) [39]. 

Ginkgo biloba extract (GbE) - a plant drug- is utilized as a cure for DN. 
In DN mice, it enhances renal action via lowering glomerular hyper-
trophy and the kidney to body weight proportion. GbE also attenuates 
the augmentation of IL-6, tumor necrosis factor-alpha (TNF-α), and 
fibronectin in DN mice. In high glucose-induced podocytes, this medi-
cation inhibits the absorption of oxidized low-density lipoprotein and 
decreases ROS development. Nuclear factor erythroid 2-related factor 2 
(Nrf-2) siRNA considerably decreases the beneficial properties of GbE by 
increased IL-6 and TNF-α expression rates. GbE defends podocyte cells 
from hyperglycemia and inhibits the onset of DN by activating Nrf-2. 
The results suggest that GbE may be used to gain further insight into 
its potential as a therapeutic agent in clinical DN [40]. Fucoidans - 
complex polysaccharides obtained from brown seaweeds - have many 
bioactive features. Among Fucoidan key activities, its anti-diabetic 
possessions have established the most research consideration in the 
past years [41,42]. The PI3K/PKB pathway, which controls insulin 
production, has been activated by Fucoidan [43]. Translocation of 
GLUT4 is also caused. In mice, some fucoidans decrease blood glucose 
and increase insulin sensitivity while lowering basal lipolysis in adipo-
cytes, potentially lowering hyperglycemia through absorption of glucose 
[44,45]. Plant extract of Hippophae rhamnoides normalizes blood glucose 
via the PI3K/Akt pathway. 

Furthermore, Rosmarinus officinalis extract inhibits NF-κB and c-Jun 
amino-terminal kinase (JNK) pathways, stimulating insulin resistance. 
Fatty acids oxidation and Lipogenesis, which are also related to the in-
sulin resistance process, are planned by AMPK signaling pathway 
stimulation through Helminthostachys zeylanica extract [46]. Liraglutide 
- human GLP-1 analog - reduces the IL-1β, NF-κB, and TNF-α expression 
in diabetic mice. According to the present findings, Liraglutide can 
meaningfully recover hepatic steatosis, mainly via decreasing the key 
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inflammatory mediator's expression in the TNF-α pathway; therefore, it 
recovers non-alcoholic fatty liver problem in mice with diabetes 
[47,48]. Auricularia polytricha (AP) and Auricularia auricula (AA) are 
prevalent eatable fungi. Their anti-diabetic roles may comprise the NF- 
κB and related pathways (as NF-κB actions at the crossroads of pathways 
number) [49]. 

Plantamajoside (PMS) is a phenylpropanoid glycoside that has an 
anti-diabetic effect. The results have shown that PMS improves the cell 
damage prompted by high glucose in HBZY-1 cells as titled rat 
glomerular mesangial cells. The evaluations have verified an anti- 
inflammatory action of PMS, as showed by diminished levels of TNF-a 
and IL-6 in these cells. Moreover, PMS pointedly inhibits high glucose- 
stimulated acts of NF-κB/Akt signaling in HBZY-1 mentioned cells. 
Thus, PMS may be a potential agent with the cure DN's ability [50]. The 
key factor of ketone bodies, β-hydroxybutyrate (BHB), has been newly 
considered a biologically potential molecule with many helpful char-
acters, especially in diabetes [51]. BHB cure suppresses histone 
deacetylase-3, resulting in a rise in acetylated H3K14 rates in the 
Claudin-5 promoter, which helps to ‘turn on’ claudin-5 development and 
reduces diabetic heart microvascular problems. These findings can offer 
valuable proof for BHB's cardiovascular-protective properties, making 

its clinical use easier [52]. Expression of senescence proteins including 
p16INK4a, p53 and p21Cip1/WAF are repressed meaningfully in T2D by 
metformin. 

Metformin prevents Senescence-associated secretory phenotype 
(SASP) by suppressing IKK/NF-κB function [53–55]. AMPK is triggered 
within the cell in response to many stresses that raise the intracellular 
AMP/ATP proportion. An amount of the useful impacts of the thiazoli-
dinediones can be facilitated via stimulation of AMPK. Metformin 
stimulates AMPK in the nonappearance of any growth in the AMP/ATP 
proportion. Therefore, anti-diabetic drugs of rosiglitazone and metfor-
min act via prompting AMPK [56]. Zn deficiency is linked to the 
development of several chronic diseases, including diabetes. Zn has 
insulin-similar possessions and triggers the insulin-related signaling by 
the Akt/PKB pathway, which finally leads to improved cellular glucose 
absorption. Zn has also been shown to influence epigenetic control and 
autophagy, proposing a novel mechanism for Zn's advantageous effects 
on DN. Nevertheless, the therapeutic efficiency of Zn on inhibition and 
curing diabetic problems remains to be recognized, which licenses next 
clinical studies [57,58]. Cure with cannabidiol is capable to reduce the 
nitrative-oxidative stress (lessening the cardiac ROS production) and 
changes of the pro-survival related to Akt and stress-related pathways 

Fig. 2. Anti-diabetic drugs affecting PI3K/AkT/PKB pathway. Created with Biorender.com.  
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molecules (JNK and p38) in the diabetic heart. It also reduces the NF-κB 
stimulation, TNF-a and ICAM-1 expression, death of cells, fibrosis in 
cardiac diabetes, and recovers the related typical practical changes. 
Therefore, this drug may have tremendous beneficial probable effect in 
diabetic cardiovascular treatment [59]. 

The anti-diabetic therapeutic impact of Ecklonia cava, a brown alga, 
in type 1 diabetes is made by stimulating both PI3K/Akt and AMPK 
signaling key factors [60]. Genistein, a flavonoid found in legumes and 
several herbal medicines, can act as a natural anti-diabetic by activating 
the cAMP/PKA-related extracellular signal-regulated kinase 1/2 (ERK1/ 
2) signaling pathway, which regulates pancreatic beta cell activity [61]. 
Results show that Dendrobium officinale polysaccharide (DOP) can 
knowingly hinder the glucagon-facilitated cAMP-PKA pathway. This 
polysaccharide also promotes hepatic glycogen synthesis by increasing 

the expression of glycogen synthase and decreasing the expression of 
glycogen phosphorylase, as well as inhibiting hepatic glycogen 
destruction in diabetic mice. For the meantime, DOP can reduce the 
expressions of phosphoenolpyruvate carboxykinase and glucose-6- 
phosphatase, which will hinder cellular gluconeogenesis by the 
glucagon-facilitated Akt/FoxO1 signaling in diabetic mice. As a result, 
DOP will enhance hepatic glucose metabolism by increasing hepatic 
glucose consumption and decreasing hepatic glucose intake, ultimately 
helping to relieve hyperglycemia in T2D mice [62]. 

Agonists for the serotonin 2C receptor (5-HT2CR) increase glucose 
tolerance and decrease blood insulin levels in T2D mice. These impacts 
on glucose homeostasis need melanocortin-4 receptors (MC4Rs) down-
stream stimulation, but not MC3Rs. These findings propose that aiming 
5-HT2CRs may increase glucose tolerance without weight changes and 

Fig. 3. Anti-diabetic drugs affecting PI3K/AkT/PKB pathway. Created with Biorender.com.  
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that this may demonstrate a new approach in the treatment of T2D [63]. 
Heat shock proteins (HSPs) are molecular chaperones that regulate 
protein folding and are caused by cellular stress. Many HSPs, including 
HSP70 and HSP90, which are the main controllers of pathological 
mechanisms complicated in diabetes problems, are affected by diabetes. 
Cure of diabetic mice with 17-dimethylaminoethylamino-17-demethox-
ygeldanamycin (DMAG) recovers renal action. Besides, DMAG consid-
erably decreases atherosclerotic injuries. The anti-atherosclerotic and 
renoprotective impacts of DMAG are facilitated by the stimulation of 
defensive HSP70 accompanied by NF-kB inactivation and signal trans-
ducers and activators of transcription (STAT) and aim genes expression, 
both in diabetic mice and in many cells under hyperglycemic situations. 
In experimental diabetes, HSP90 repression by DMAG slows renal and 
vascular damage progression, which could have implications for dia-
betes problem prevention [64]. Gymnemic acid obtained from Gymnema 
sylvestre has been shown to have an anti-hyperglycemic function; 
nevertheless, it increases the PI3K expression and glycogen production 
and stimulates the Akt phosphorylation while decreases the glycogen 
synthesis kinase-3β (GSK-3β) expression in T2D rats. Furthermore, in 
Gymnemic acid-cured T2D rats, key proteins complicated in AMPK- 
facilitated gluconeogenesis are expressed lowly. Briefly, the hypogly-
cemic effects of Gymnemic acid may be associated with stimulating 
signal transduction of insulin and stimulating AMPK- and PI3K/Akt- 
mediated pathways in T2D rats [65,66]. 

Oridonin, a component obtained from Rabdosia rubescens, has several 
notable immunoregulatory, anti-inflammatory, and anti-tumor func-
tions (Fig. 3). It pointedly recovers inflammatory cell infiltration, 
especially in the kidney, and decreases cytokine levels such as TNF-α and 
IL-6, both in vivo and in vitro. TLR4 is a major facilitator of innate im-
mune and responses related to the inflammation expansion in DN. Ori-
donin administration substantially reduces TLR4 expression in DN, 
according to molecular studies. The results also have exhibited that 
Oridonin suppresses the phosphorylation of p65 and p38 and NF-κB 
DNA-connecting action. Indeed, these results may be ascribed to Ori-
donin and other components such as Wogonin and Urtica dentata anti- 
inflammatory and regulatory properties on the TLR4/p38-MAPK and 
TLR4/NF-κB key pathways [67–72]. 

In diabetic rats, administration of caffeic acid hexyl (CAF6) and 
dodecyl (CAF12) amide compounds raises retinal superoxide dismutase 
action. CAF6 and CAF12 have also been shown to have neuroprotective 
properties in the DR animal models. These mechanisms appear to be 
mediated by (a) increased anti-oxidant function in diabetic retinal tissue 
through the anti-oxidant enzyme superoxide dismutase, (b) avoiding 
ERK high stimulation in retinal tissue, and (c) activation of AKT 
signaling pathways to promote retinal neuron survival and develop-
ment. As a result, these compounds' neurotrophic properties may hold 
great promise to produce new therapeutics for DR and other diabetic 
abnormalities [73]. The diabetes-associated osteoporosis knowingly 
increases the triggering of the NF-κB, JNK/MAPK, and PI3K/AKT 
pathways and enhances the expression of related factors. Bergapten has 
been demonstrated to repress the stimulation of the PI3K/AKT/ 
mammalian target of rapamycin (mTOR), NF-κB, and JNK/MAPK 
pathways, thus defending trabecular construction and reducing bone 
tissue differentiation. This constituent can also decrease collagen's 
injury by its function [74]. 

Psidium guajava is a small plant or tree cultured in hot and subtrop-
ical areas everywhere the world. Psidium guajava reduces the total 
cholesterol, free fatty acid, phospholipids, and LDL and enhances HDL. It 
noticeably stimulates Akt, PI3K, p-Akt, GLUT2 – Psidium guajava en-
hances the GLUT-2 translocation from cytoplasm to the cell membrane. 
Here, AMPK and p-AMPK, as the PI3K/Akt pathway key effector agents 
in streptozotocin injected diabetic rats, have the main role; finally, he-
patic gluconeogenesis will be inhibited [75]. Deep seawater (DSW) has 
beneficial properties on cardiac apoptosis and hypertrophy prompted by 
hypercholesterolemia. The phosphorylation rates of the TNF-α-regu-
lated downstream factors and P38 MAPKs are particularly increased in 

diabetic heart tissues. These greater phosphorylation rates consequently 
increase NF-κB-regulated inflammatory agents. Treatment with DSW 
and MgSO4, the key mineral in DSW, has been shown to reduce 
myocardial hypertrophy. DSW may have therapeutic potential in the 
prevention of diabetes-related cardiovascular diseases, according to 
available results [76]. 

Emodin is the active ingredient in rhubarb, a Chinese drug with a 
wide range of pharmacological effects and a high therapeutic value. 
Treatment with this component pointedly inhibits inflammation- 
associated proteins and oxidative stress process, represses the B-cell 
lymphoma 2-associated X protein (Bax) and intercellular adhesion 
molecule 1 (ICAM-1) expression, enhances p-GSK-3β and p-Akt expres-
sion, and suppresses caspase-3 action in diabetic rats. Thus, it is obvious 
that emodin defends against DN and that the fundamental process may 
include the repression of inflammation, Bax and ICAM-1, and stimula-
tion of the PI3K/Akt/GSK-3β key pathway [77]. Isosteviol sodium pre-
vents the cardiomyopathy-initiated promotion of both NF-κB and ERK 
pathways in diabetic patients. These results show that Isosteviol sodium 
may be advanced into a potential treatment for diabetic cardiomyopathy 
that its process includes the repression of inflammation and oxidative 
stress by hindering NF-κB and ERK without altering AGEs or blood 
glucose [78]. 

Grifola frondosa, a beneficial medicinal mushroom variant, is 
commonly eaten as traditional drugs and health nourishments in Japan 
and China. It is one of the herbal medicines conventionally utilized for 
curing inflammation, diabetes and cancer. Its bioactive composite has 
anti-diabetic properties via the repression of ROS creation, high 
expression of glucose uptake, and regulation of MAPKs, PI3K/Akt, and 
GLUT-4 signaling pathways. Therefore, G. frondosa can apply as a pro-
spective candidate for clinical application in refining T2D [79,80]. 
Sanhuang Xiexin Tang (SXT), a typical medicament, has been clinically 
utilized to treat diabetes for many years. The expression of Akt, PI3K, 
GLUT4 mRNA, and their protein complicated in the PI-3 K/Akt signaling 
of T2D is distinctly regulated via SXT application [81]. 

The anti-insulin resistance and anti-diabetic impacts of Coriolus ver-
sicolor extract in myoblast cells (L6 cells) and muscle of T2D rat display 
enhancement of insulin resistance translocation and GLUT4 protein 
expression in skeletal muscle, in which both p38 MAPK and PI3K/Akt 
pathways are complicated. Consequently, this extract may be used as a 
promising drug for curing T2D when involved in infectious diseases or 
cancer [82]. Citrus pectin increases hepatic glycogen production, 
glucose tolerance, and blood lipid levels in T2D rats used as an anti- 
diabetic drug. It also decreases high insulin resistance. Furthermore, 
after the pectin cure, Akt protein expression is increased, and expression 
of GSK3β is decreased, representing that the probable anti-diabetic 
process of pectin may happen via regulation of the PI3K/Akt. Overall, 
the results suggest that this citrus can improve T2D and possibly be 
utilized as an adjuvant cure [83]. 

Veratrilla baillonii Franch (VBF) is broadly consumed as tea or drug 
for preventing and treating many complaints in the minority zones of 
Southwest China. VBF decreases the injuries of kidneys and liver in 
diabetic mice. The results show that IRS1/PI3K/AKT pathway is 
complicated in the anti-diabetic action of VBF. This proves that V. 
baillonii can be a beneficial candidate for increasing research about its 
novel anti-diabetic impacts [84]. Timosaponin B-II (TB-II), a significant 
steroidal saponin component, has many anti-inflammatory and hypo-
glycemic properties. TB-II reduces the blood glucose rates and improves 
renal damage in an alloxan-stimulated diabetic animal model. Also, TB- 
II hinders the mTOR, thioredoxin-cooperating protein, and NF-κB 
expression, and these impacts have a vital role in recovering DN [85]. 

Tanshinone IIA (TSN IIA) is one of the most bioactive constituents of 
traditional Chinese herbal medicine, and it is widely used in China to 
treat cerebrovascular and cardiovascular diseases. It has been confirmed 
that TSN IIA improves neuropathic ache by triggering the Nrf2/anti- 
oxidant response elements (ARE) pathway and preventing the NF-kB 
pathway [86] similar to Oleanolic acid [87] in diabetic rats. Naringin 
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is a flavanone glycoside present in a wide variety of fruits, including 
grapes and citrus. According to pharmacokinetics studies conducted on 
rats, this glycoside and its metabolites, which are extremely lipophilic, 
are rapidly distributed to body organs such as the stomach, kidney, and 
liver after oral administration. Hindering the JNK/MAPK and ERK1/2 
pathways is a new potential mechanism by which Naringin improves 

renal fibrosis in vitro in diabetes [88]. Fig. 4 illustrates the anti-diabetic 
drugs affecting JNK, ERK and p38/MAPK signaling pathways. 

D-pinitol -a composite obtained from leguminosae and pinaceae herbal 
drugs- has a positive character in the regulation of insulin facilitated 
glucose absorption in the liver via PI3K/Akt pathway activation in rats 
with T2D [89]. Ginsenoside Rg5 (Rg5) is a key monomer in the 

Fig. 4. Anti-diabetic drugs and their target signaling pathways i.e., ERK, JNK and p38/MAPK pathways. Created with Biorender.com.  

S.H. Shahcheraghi et al.                                                                                                                                                                                                                       

http://Biorender.com


Life Sciences 278 (2021) 119632

9

important protopanaxadiol constituent of black ginseng. The develop-
ment of ROS and the expression of oxidative stress indicators in DN 
mice's kidneys decreases after curing with Rg5. Moreover, the IL-1β and 
IL-18 expression as inflammatory cytokines are repressed, and the NF-kB 
expression and the p38 MAPK phosphorylation are decreased with Rg5 
cure in DN mice [90]. Rk3 (G-Rk3), another Ginsenoside, is one of the 
most active ingredients in ginsenosides. It improves T2D mice by 
mediating hepatic gluconeogenesis by stimulating the AMPK/Akt 
pathway [91]. Liuwei Dihaung decoction is a famous typical traditional 
Chinese medication. It can mediate insulin resistance by PI3K/Akt 
pathway regulation in T2D rats [92]. 

Curcumin, the main polyphenol from the Curcuma longa frequently 
recognized as turmeric, has been investigated to have renoprotective 
impacts on DN. It has been confirmed that the sphingosine kinase 1- 
sphingosine 1-phosphate (SphK1-S1P) pathway plays a way with a key 
role in the DN. Moreover, curcumin suppresses the DNA-connecting 
action of activator protein 1 (AP-1). Furthermore, low expression of 
the SphK1-S1P is a new process by which curcumin recovers DN's 
development. Curcumin's therapeutic targets for modulating the SphK1- 
S1P signaling pathway include inhibiting AP-1 stimulation and pre-
venting renal fibrosis in diabetes [93]. Sitagliptin as an inhibitor of 
dipeptidyl peptidase-4 has been described to stimulate cardiosafety in 
diabetic patient's heart by decreasing hyperlipidemia and hyperglyce-
mia. Its function is via decreasing expression of the Janus kinase (JAK)/ 
STAT pathway factors [94]. Tocochromanols are a class of compounds 
that have vitamin E activity and are necessary for human nutrition. 
These composites, particularly tocotrienol, not only decrease the dia-
betic situation but also converse cognitive defects via regulation of TNF- 
α-prompted NF-κβ pathway and caspase-3 in the rats with diabetes and 
therefore it may obtain clinical request to cure neuronal defects in the 
diabetes [95]. Punicalagin, which is mainly in the peel of the pome-
granate, is the key pomegranate polyphenols constituent. Punicalagin 
has been revealed in previous studies to have anti-tumor, anti-oxidant, 
anti-inflammatory, and other biological properties. Punicalagin defends 
versus liver damage prompted by T2D via reinstating autophagy via the 
Akt/FoxO3a pathway [96]. 

5. Diabetic kidney disease and molecular therapy 

Pyruvate kinase catalyzes phosphoenolpyruvate (PEP) conversion to 
pyruvate, the final and physiologically unavoidable stage in glycolysis. 
PKM2 is an enzyme isoform found mainly in cancerous cells, embryonic 
tissue, and several normal adult tissues [97]. The DKD mice have upper 
rates of the PKM2dimeric type in comparison with the non-diabetic 
animal. Oppositely, repression of Sirtuin 3 (SIRT3) factor is related to 
DKD fibrosis through stimulation of TGF-β/Smad pathways (This 
signaling pathway is also essential in other studies on diabetes [98,99]) 
and related to augmented PKM2 [100]. This proposes that PKM2 may be 
the aim for DKD cure [101]. Disulfide-bond A oxidoreductase-like pro-
tein (DsbA-L) is a crucial factor in adiponectin interrelating protein with 
very high adipose expression. The axis of adipo-renal includes signaling 
factors that are employed to regulate the human kidney act. The high 
expression of DsbA-L in the mice adipocytes can defend against renal 
damage in diabetes by anti-inflammatory factors and may be arbitrated 
by the adipo-renal fundamental axis [102]. 

Furthermore, BI-2536 - an inhibitor of polo-like kinase 1 (PLK1) - 
reduces the Smad3 and NF-κB signaling pathways in DKD. This proposes 
that the BI-2536 can be examined as a new treatment for DKD [103]. 
Studies have shown that the YWDHNNPQIR peptide (titled RAP), a 
peptide obtained from a protein as titled rapeseed, has an anti-oxidative 
impact that is a critical process in DN. RAP concurrently decreases 
extracellular matrix gathering in mice of DN. Additionally, RAP de-
creases high glucose-stimulated cell growth. RAP can reduce DN fibrosis 
in vitro and in vivo by antagonizing the NF-κB and MAPK signaling 
factors. Therefore, RAP is anticipated to be planned as a leading com-
posite for medications to treat renal fibrosis associated with DN [104]. 

6. The molecular investigations in diabetic retinopathy 

In diabetes, the retina is exposed to more oxidative stress, and the 
transcriptional activity of Nrf2, which is essential for regulating many 
anti-oxidant genes, is reduced. The intracellular inhibitor Keap1 medi-
ates the nuclear movement transcriptional function of Nrf2, which is a 
crucial biomarker, and retinal Keap1 levels are elevated in diabetes. A 
long non-coding RNA (LncRNA) as titled LncRNA MALAT1 modulates 
anti-oxidant protection in diabetic retinopathy via Nrf2- Keap1 factors. 
Prohibition of LncRNA MALAT1 has a possible role in defending the 
retina from oxidative injury and inhibits diabetic retinopathy develop-
ment [105–107]. Moreover, in diabetic retinopathy, erythropoietin de-
fends the inner blood-retinal barrier via hindering microglia 
phagocytosis rate by Src/Akt/cofilin key pathway in vitro examination. 
This emphasizes erythropoietin's therapeutic properties for curing reti-
nopathy in diabetes [108]. 

7. miRNA studies in diabetes 

The vital roles of prostaglandin E receptor 3 (PTGER3) low expres-
sions and MMP-2 high expressions in the kidney tissue from DN patients 
have been verified. They are controlled by lncRNAs (such as LINC00960 
and RP11-363E7.4) and miRNAs (including hsa-miR-1237-3p and hsa- 
miR-106b-5p) that have been infrequently described in DN. These reg-
ulatory disorders may be the defense process in contradiction of renal 
damage following diabetes [109]. In the rat model of diabetic retinop-
athy, miR-199a-3p suppresses retinal pericytes and endothelial cell 
migration, proliferation, and invasion by directing fibroblast growth 
factor 7 (FGF7), suppressing the stimulation of the PI3K/AKT/ 
Epidermal Growth Factor Receptor (EGFR) signaling pathway [110]. 
LncRNA XIST eases the invasion, proliferation, and migration and re-
presses the apoptosis process through SMAD2/miR-34a axis in diabetic 
cataract problem; therefore, XIST knockdown represses cell prolifera-
tion and growth and also induces apoptosis in cataract via the SMAD2 
central axis [111]. Occlusion is a primary aim of miR-132, modulating 
cell mobility and viability under high glucose situation via the JAK/ 
STAT3 pathway. 

Researchers have discovered that great glucose-cured human ARPE- 
19 cells related to retinal epithelium display miR-132 enhanced 
expression, reduced expression of the tight-junction factors such as E- 
cadherin Occludin, and augmented cell permeability and mobility. 
Therefore, aiming to impact miR-132 on Occludin and the JAK/STAT3 
signaling pathway can characterize a new actual diabetic retinopathy- 
therapy approach [112]. miR-34c has been observed to prohibit 
fibrosis and the transition of mesenchymal-epithelial of kidney cells. 

Moreover, miR-34c high expression enhances the anti-apoptotic Bcl- 
2 gene expression, reduces the pro-apoptotic Bax protein expression, 
and cuts Caspase-3. Taken together miR-34c high expression suppresses 
the Notch pathway through directing Jaggged1 and Notch1 in high 
glucose-cured cells, demonstrating a new and beneficial therapeutic aim 
for the diabetic nephropathy therapy [113]. miR-18b is acting as a 
negative modulator by aiming insulin growth factor-1 (IGF-1), a key 
agent for VEGF creation and proliferation in the retinal endothelial cells. 
miR-18b employs its action on VEGF production and proliferation via 
repressing the IGF-1 receptor pathway, subsequently prohibiting the 
phosphorylation downstream (MAPK/ERK kinase) MEK, Akt, and ERK. It 
will offer a novel vision into understanding the process of retinopathy in 
diabetes and an attractive therapeutic aim for diabetic proliferative 
retinopathy [114]. 

8. Biomarkers 

Examining the pharmacological process of biomolecules as bio-
markers insight of pathogenesis is a tangible way to investigate novel 
drugs. Fibroblast growth factor 21 (FGF21) is an important cytokine, 
chiefly expressed in liver, muscle tissue, and fat answering to exercise 

S.H. Shahcheraghi et al.                                                                                                                                                                                                                       



Life Sciences 278 (2021) 119632

10

and nourishment, and has a key role in enhancing lipid and glucose 
metabolism. Research displays that fatty acids can induce the FGF21 
expression via triggering the peroxisome proliferator-activated receptor- 
gamma (PPARγ) molecular pathway [115]. Furthermore, studies have 
also revealed that fatty acids can be connected to stimulated PPARα and 
prompt the FGF21 expression as the main task [116]. Because of the 
enhancing serum FGF21 rate in diabetic conditions, FGF21 can be a key 
predictor or good biomarker in diabetes [117,118]. 

Four lncRNAs may impress the harshness of disease among T2D 
patients. They include metastasis-associated lung adenocarcinoma 
transcript (MALAT), myocardial infarction-associated transcript 
(MIAT), NF-kappaB interacting lncRNA (NKILA), and nuclear enriched 
abundant transcript 1 (NEAT1). These lncRNAs as circulating factors can 
help us identify the diabetes pathophysiology and its associated prob-
lems and thus apply these as biomarkers to adapt cure approaches and 
improve and increase new therapeutic methods [119]. In the field of 
T2D, sphingosine 1 phosphate (S1P), an endogenous lipid material in the 
human body, has gotten much publicity. S1P is a crucial factor in the 
anti-apoptotic impact of adiponectin on β cells of the pancreas. The re-
sults have exhibited that adiponectin key factor requests to be depen-
dent on to S1P factor to perform its tasks. In cellular experiments, 
adiponectin has inhibited ceramide gathering and decreased ceramide- 
stimulated apoptosis. 

The impacts of S1P as a key biomarker on T2D can be shortened as 
follows: (1) S1P can antagonize β cell apoptosis and induce its prolif-
eration; (2) S1P antagonizes resistance of insulin in human muscle tis-
sues; (3) S1P increases the Akt pathway and induces absorption of 
hepatic glucose, so decreasing blood glucose [120]. Silent information 
regulator 1 (Sirt1) - a deacetylase - is a vital biomarker in renal tubular 
transition of mesenchymal–epithelial related to diabetic nephropathy by 
arbitrating deacetylation of Yin yang 1- a extensively expressed zinc 
finger RNA/DNA -connecting key transcription factor- [121]. Estrogen- 
related receptor α (ERRα) is a key aim for detecting new therapies for 
diabetes, especially on the gene and protein expression of factors 
involved in lipids metabolism in the diabetic rat model [122]. ERRα 
triggers the PPARα gene expression, which partially helps the process 
via which ERRα modulates metabolism [123,124]. 

The PPARγ coactivator 1 (PGC-1) group of transcriptional coac-
tivators stimulates biogenesis in mitochondria, oxidation of fatty acid, 
glucose absorption, and gluconeogenesis in different tissues [125,126]. 
ERRα can modulate the expression of PGC-1α in myocytes via trans-
stimulation of PGC-1α key gene [127,128]. Therefore, the ERRα recep-
tor and its co-regulator (PGC-1α) are important molecular biomarkers in 
diabetes [129,130]. Most tissues and bodily fluids contain lysophos-
phatidic acid (LPA), a bioactive phospholipid. LPA works by combining 
G protein with unique LPA receptors (LPAR1 to LPAR6). LPA, as a 
biomarker, causes cell damage through several interconnected path-
ways, including the production of ROS and inflammatory cytokines 
[131]. Several studies have shown that the LPA–LPAR axis is implicated 
in several diseases, including diabetic nephropathy. 

LPA signaling can modulate proliferation, fibrosis, and the main in-
flammatory responses or stimulate the apoptotic process [131] via 
several signaling pathways, including 1) PI3K-AKT axis for apoptosis; 2) 
LPA-RAGE axis for glomerular injury; 3) TLR4-NADPH oxidase- 
ROS–NF-KB/MAPK or TLR4-NF-KB/MAPK axis for inflammatory 
response; 4) PI3K-AKT-GSK3β-TGFβ axis for fibrosis; 5) Rac1GTPase- 
MAPK-KLF5-CDK4/Cyclin D1 axis for proliferation and 6) Wnt/β- cat-
enin axis [132–136] for both apoptosis and fibrosis mechanisms [131]. 
It has been well recognized that KCa3.1 is extensively expressed all over 
the body, especially in platelets, erythrocytes, B and T cells, monocytes, 
epithelia, microglia, vascular endothelial cells, vascular smooth muscle 
cells, and fibroblasts. KCa3.1 modulates Ca2+ entrance and regulates the 
Ca2+ signaling pathway in the mentioned cells. It has been revealed that 
KCa3.1 is a possible molecular target and key biomarker for pharma-
cological effects in restenosis of vascular and diabetic nephropathy. 
Autophagy is developing as a vital pathway in several diseases such as 

diabetic nephropathy. It is recognized that oxidative stress is a critical 
process in autophagy defect and diabetic nephropathy. KCa3.1 stimu-
lation helps to defective tubular autophagy in diabetic nephropathy via 
PI3K/Akt/mTOR key pathway [137]. KCa3.1 blockade improved renal 
fibrosis in diabetes [138]. Diabetic macular edema is the main agent of 
vision damage related to diabetic retinopathy. Failure of the blood- 
retinal barrier, especially the inner part, is an early happening in the 
pathogenesis of diabetic retinopathy. Apelin, an endogenous ligand, 
facilitates angiogenesis and is complicated in the expansion of diabetic 
retinopathy. 

Apelin-13 enhances the biological action of endothelial cells of the 
human retinal and expression of both tight junction and cytoskeleton in 
macular edema by MAPK/ERK and PI3K/Akt signaling pathways. 
Apelin-13 as an initial promoter of vascular permeability may suggest a 
new plan and apply as a beneficial biomarker in the early treatment of 
diabetic retinopathy [139]. AQR is also a new T2D related gene and 
biomarker that modulates vital signaling pathways for glucose meta-
bolism. The repression of AQR hinders the mTOR and its pathway and 
the ubiquitination procedure of protein [140]. C-X-C chemokine ligand 
6 (CXCL6) - a key inflammatory cytokine that recalls inflammatory cells 
to the inflammation place via connecting to the CXCR1, 2 receptors - in 
diabetic nephropathy condition can induce fibrosis-associated agents to 
precipitate the expansion of nephropathy interstitial-renal fibrosis by 
inducing JAK/STAT3 pathway. Therefore, CXCL6 can be a potential new 
therapeutic aim and applicant biomarker for JAK/STAT3 signaling to 
cure diabetic nephropathy [141]. Diabetes may enhance the occurrence 
and mortality related to cardiac disappointment after severe myocardial 
infarction in patients. Caveolin-3 - a biomarker protein recognized to 
keep in contradiction of myocardial damage that modulates car-
diomyocyte β2-adrenergic receptor (β2AR) placement on the cell 
membrane and is a mediator cyclic adenosine monophosphate (cAMP) 
downstream pathway and in myocytes from usual hearts. The regulation 
by Caveolin-3 is restricted to T-tubules - employs a protective impact on 
diabetic hearts in contradiction of reperfusion-ischemia injury via the 
β2AR, brain-derived neurotrophic factor (BDNF)/tropomyosin receptor 
kinase B (TrkB), and cAMP/protein kinase (PKA) key pathways [142]. 

9. Nano studies 

Livers from a great fat diet/Streptozotocin (STZ)-cured rats have 
displayed several circulatories, cytotoxic and inflammatory changes. 
Combined therapy with metformin and chitosan stabilized nanoparticles 
(CTS-Se-NPs) leads to a better notable anti-diabetic impact that has been 
confirmed by a considerable reduction in fasting blood glucose and in-
sulin rates, and also a high expression of anti-apoptotic genes and low 
expression of apoptotic genes [143,144]. Furthermore, it improves the 
heart and hepatic tissue injury, decreases lipid gathering and pro- 
inflammatory cytokines rates, and reinstates the anti-oxidant ability. 
The nanoparticles used were composed of selenium (Se), which is an 
important micronutrient used to treat and prevent diseases [145], and 
chitosan, a natural biocompatible, non-immunogenic, biodegradable, 
and non-toxic cationic polysaccharide that is very promising for insulin 
delivery besides polymeric nanoparticles for effective insulin delivery 
[146–148]. Nanoparticles of Polydatin-loaded chitosan are the potential 
nano-carriers for the continued distribution of Polydatin [166]. These 
nanoparticles are also more active than metformin and polydatin in 
improving diabetic cardiomyopathy via anti-inflammatory and anti- 
oxidant effects. Their properties are applied more in protecting the 
heart through decreased heart rates of NF-κβ and TNFα and activation of 
Nrf2 pathway. The use of other types of nanoparticles made of gold 
(AuNPs), zinc oxide (ZnONPs), biodegradable polymers, bovine serum 
albumin (BSA), dendrimers and polymersomes have been proposed as 
nanosized carriers for the efficient delivery of antidiabetic drugs to treat 
diabetes, cancer and other diseases [143,144,149–156]. AuNPs have 
shown to possess unique optical, chemical and biological properties such 
as anti-hyperglycemic, anti-inflammatory, anti-oxidative and 
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antimicrobial activities [157,158]. ZnONPs have exhibited potent anti- 
hyperglycemic, anti-oxidative stress, and anti-inflammatory activities 
in a diabetic animal model [159,160]. BSA is a 3D nanostructure that 
can bind with drugs in a non-covalent manner and presents a homolo-
gous composition to the human serum albumin [161]. Therefore, BSA is 
biocompatibility, biodegradable, non-toxic, non-immunogenic, and thus 
can be use as efficient drug delivery system [162,163]. Dendrimers are 
3D homogenous nanosized polymeric structures consisting tree-like 
branches that have gained much attention in the field of drug delivery 
and personalized medicine [164]. Polymersomes are polymeric vesicles 
produced with amphiphilic block polymers of different molecular 
weights that are more stable in comparison with liposomes [165]. 

10. Conclusions 

This review has documented about types of complications in patients 
with diabetes. The most important complications in diabetes include 
cardiomyopathy, nephropathy, inflammation, retinopathy. Also, this 
review has brought the main and new drugs and molecular targets. 
Finally, according to this review's findings, the most important signaling 
pathways and factors related to diabetes and its complications are NF- 
κB, JNK/MAPK, PI3K/AKT/mTOR, GSK-3β, FoxO3a. These novel find-
ings will help improve the treatment and management of diabetes based 
on molecular and targeted therapy. 
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