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A B S T R A C T   

Background and objective: Epi-miRNAs as a class of miRNA target genes involved in the epigenetic pathway like 
DNMTs and HDACs. They can play a role as a proto-oncogene or tumor suppressor. The present study evaluates 
the expression pattern of miR-140-5P, as a commonly mentioned tumor suppressor that targets DNMT1 and 
HDAC4 genes, in papillary thyroid cancer (PTC). 
Methods: 32 tissue and normal tumor margins samples of PTC were collected. The relative expression of miR-140- 
5P, DNMT1, and HDAC4 genes were evaluated and compared between these two groups. 
Results: The results revealed no significant change in the relative expression of DNMT1 and HDAC4 in PTC 
samples. However, the expression of miR-140-5P, contrary to our hypothesis, significantly increased in the tumor 
group compared to the control. 
Conclusion: According to the common role of miR-140-5P as a tumor suppressor gene in different groups of 
cancer, the expression increasing of it seems not to be acceptable. However, considering the increased expression 
of miR-140-5P as only reason for declining this role is also not sufficient.   

1. Introduction 

Thyroid cancer as the most common type of endocrine cancer has 
increased dramatically in recent decades (Jemal et al., 2011), but its 
significant increase is still lower than other high prevalence cancers, 
such as breast, lung, and colon cancer (Siegel et al., 2017). However, the 
elevated chance of survival in patients diagnosed with this type of 
cancer through successful surgery and treatment could be the underly
ing reason for being limited research in the cellular and molecular pa
thology of this particular cancer. 

From a histological and cellular pathology viewpoint, thyroid cancer 
generally falls into two categories of follicular and para-follicular cell 
origins. Furthermore, follicular cancer which is more prevalent can be 
divided into three groups, namely, Well-differentiated (WDTC), Poorly 
differentiated (PDTC), and Anaplastic thyroid cancer (ATC) 

(Schlumberger, 2007). WDTC group includes thyroid follicular and 
papillary thyroid carcinoma (PTC), the most common type among all 
types of thyroid cancer. Most often, advanced forms of thyroid cancer, 
include PDTC and ATC, results from WDTC progression (Acquaviva 
et al., 2018). 

The onset and progression of thyroid cancer, in its most common 
form, i.e. PTCs, like other cancers, are basically affected by genetic and 
environmental factors. The most frequent genetic factors that interfere 
with the development and progression of this group of cancers are 
V600E point mutations in the BRAF oncogene (in about two-thirds of 
PTC patients) (Xing, 2013; Xing et al., 2013; Choi et al., 2014) and 
different type of mutations in RAS isoforms, includes HRAS, NRAS, and 
KRAS (Liu et al., 2009). These mutant proteins can have a significant 
impact by activating the MAPK signaling pathway in the tumorigenesis 
process (Cell, 2014). In addition to these genetic changes, another set of 
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changes called epigenetic changes can also affect tumor progression 
(Cao et al., 2018). 

Epigenetic changes include DNA methylation (Singal and Ginder, 
1999), Histone modifications (Falkenberg and Johnstone, 2014) and 
Non-coding RNA function; microRNAs (miRNAs) and long noncoding 
RNA (lnRNAs) (Esteller, 2011). The DNA Methyl Transferases (DNMTs), 
Histone Acetyl Transferases (HATs) and Histone Deacetylases (HDACs) 
gene products affects the transcription (Fardi et al., 2018) while miRNAs 
and lnRNAs affects translation of different genes in many studies of 
cancers (Macfarlane and Murphy, 2010; Schmitt and Chang, 2016). 
They, all, influence the level of the products of their targets and can 
affect the development of tumors positively or negatively (Xing, 2005; 
Alvarez-Nunez et al., 2006). 

Among them, non-coding RNAs are more recent, and the focus of 
many studies on cancer, particularly in the last two decades, has been 
dedicated to them (Fabbri et al., 2007). Some miRNAs besides their 
independent inhibitory function on gene translation of different genes, 
interfere with the gene transcription of DNMTs and HDACs indirectly 
(Suzuki et al., 2012). From this group, the recognized ones such as mir- 
152 (Yang et al., 2017; Zhang et al., 2018a), mir-29a (Zhang and Xu, 
2016; Takata et al., 2013), mir-140 can be mentioned that target the 
genes include DNMT1, DNMT3A, DNMT3B, and HDAC4. Among them, 
miR-140-5p has been also introduced as a possible tumor suppressor 
gene in different types of cancers and its expression level, in parallel 
with cancer development, gradually decreased (Zhai et al., 2015; Lu 
et al., 2017; Zhou et al., 2019; Li and Wang, 2020). This decrease can 
cause the increase of expression level of mir-140-p's gene targets, like 
DNMT1 and HDAC4. Although limited studies have been performed on 
the expression of this miR in thyroid cancerous tissues (Qianqian Yu 
et al., 2021), no study has been performed to investigate the association 
of the expression of it with its potential gene targets (DNMT1 and HDAC) 
in PTC, up to now. Therefore, in response to this question, the present 
study aimed to find the relationship between the expression level of 
miR-140-5P and the potential inhibitory effect on DNMT1 and HDAC4 
mRNA levels, acting as an Epi-miR, in thyroid tumor tissue in compare to 
non-cancerous tumor margin. 

2. Materials and methods 

2.1. Demographic and pathologic characteristics of patients 

Human thyroid carcinoma tissue and adjacent normal tissue (32 
pairs) were obtained after collecting consent forms from the patients 
undergoing thyroid surgery at Mortaz Hospital, Shahid Rahnemoon 
Hospital, and Mojibian Hospital of Yazd, with the approval of hospital 
pathologist. Samples were transferred to − 80 ◦C freezer in <1 h. There 
was no preoperative treatment for any of the patients, and the patients 
under 19 were excluded from the study. Clinical and metastatic data on 
lymph node status were collected from patient pathological data. The 
sample population includes 28 women and 4 men with the average age 
of 39.29 (±3.53). This study was approved by the Ethics Committee of 
Yazd University of Medical Sciences (Code: IR.SSU.MDICINE. 
REGREC.1396.70). 

2.2. RNA extraction, cDNA synthesis and qPCR 

The miRNAs were isolated using High Pure miRNA Isolation Kit 
(Roche, Basel, Switzerland) according to the protocol. The miRNAs 
cDNA synthesis was done by poly A tail method using BONmiR High 
Sensitivity Kit (Bonyakhteh, Iran). Total RNA was extracted manually 
using TRIzol solution (Invitrogen, USA). Total RNA cDNA synthesis was 
performed using Revert Aid First Strand cDNA Synthesis kit (Thermo 
Scientific, USA) according to the protocol. 

Relative expression of miR-140-5Pin the normal and cancerous tis
sues was done using a mixture containing an appropriate concentration 
of specific primers. The sequences of miR-140-5P forward and its 

universal reverse primers were 5′-ACA GTG GTT TTA GCC TAT GGT-3′

and 5′-GAG CAG GGT CCG AGG T-3′ respectively. The reference gene 
was U6 and its forward and reverse primer sequences were 5′-AGA TTT 
AAC AAA AAT TCG TCA C-3′ and 5′-GAG CAG GGT CCG AGG T-3′. qPCR 
was performed using a mixture containing a specific primer, cDNA 
synthesized from the sample, and SYBR Green premix (Real QPlus 2×
Master Mix Green High ROX ™, Ampliqon, Denmark) in ABI step one 
machine (Applied Biosystems, Foster City, USA). The reaction condi
tions were as follows: The reaction solution was incubated for 15 min at 
95 ◦C, then 40 cycles were repeated for 5 s at 95 ◦C, and repeated at 
60 ◦C for 30 s. Relative expression of HDAC4 (NM_006037.3), DNMT1 
(NM_001379.4), and B2M (NM_004048.4) and GAPDH 
(NM_001357943.2) genes (as reference genes) in PTC and normal 
margin tissues using an appropriate concentration of the specific primers 
are as follows; HDAC4 forward primer 5′-TCC AAC GAG CTC CAA ACT 
CC-3′, reverse primer 5′-CAT CAG GCA TTC TAC CAG GGA G-3′; DNMT1 
forward primer 5′-CAT CAG GCA TTC TAC CAG GGA G-3′, reverse 
primer 5′-CCT CAC AGA CGC CAC ATC G-3′ GAPDH forward primer 5′- 
CAA GAG CAC AAG AGG AAG AGA GAG-3′ GAPDH reverse primer 5′- 
TCT ACA TGG CAA CTG TGA GGA G-3′ B2M forward primer 5′-AGAT
GAGTATGCCTGCCCTG-3′ B2M reverse primer 5′-TGCGGCATCTT
CAAACCTC-3′. 

qPCR was performed using SYBR Green premix (Ampliqon, 
Denmark) according to the protocol. qPCR was performed by ABI step 
one (Applied Biosystems, Foster City, USA). The following conditions 
were optimized: the reaction solution was incubated at 95 ◦C for 15 min, 
then 40 cycles were repeated at 60 ◦C for DNMT1 and 65 ◦C for HDAC4 
gene for 20 s, 72 ◦C for 30 s. 

2.3. Statistical analysis 

The relative expression of miR-140-5Pand DNMT1 and HDAC4 genes 
were analyzed by SPSS software (version 16). Initially, Kolmogorov- 
Smirnov and Shapiro-Wilk tests were performed for data distribution. 
Then, according to the distribution of data, Wilcoxon or Paired Sample t- 
test was used to compare the data in the tumor and control groups. 
Differences in gene expression with invasive (lymph node metastasis) 
tumor status were evaluated using Mann-Whitney test. Pearson corre
lation coefficient test was used to examine the intensity and direction of 
the correlation between the variables. 

3. Results 

The transcription of miR-140-5P, DNMT1 and HADC4 were evalu
ated by RT-qPCR in 32 tissue samples from PTC patients and the 32 
controls from tumor margins of the same subjects. Based on the data 
obtained, miR-140-5P shows increase in tumor samples compared to 
control samples (Fig. 1). According to the t-test, with a 95% confidence 
interval, the difference in miR-140-5Pexpression between the two 
groups was statistically significant (P-value < 0.05) (Fig. 1). Moreover, 
no statistically significant changes were observed in the expression of 
DNMT1 and HDAC4 genes in tumor versus control samples (Fig. 1). In 
these two genes, due to the non-normality of the obtained data, Wil
coxon test was used and (P-value > 0.05) were set respectively. Also, 
according to the results using Pearson test, no significant correlation was 
found between DNMT1 and HDAC4 gene with miR-140-5Pin the 
samples. 

4. Discussion 

miR-140-5P can potentially acts as a tumor suppressor in thyroid 
cancer cells, like its role in other cancers, in two ways (Takata et al., 
2013; Zou et al., 2019; Song et al., 2009; Liao et al., 2018; Nie et al., 
2019). One way is direct targeting and inhibition of genes such as 
IGFBP1, SMAD2/3, FGF9 and TGFB that activated in the ERK, MAPK, 
and TGF-β pathways which helps the inhibition of cancer cell 
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proliferation and migration (Lu et al., 2017; Lan et al., 2015; Jing et al., 
2016; Fang et al., 2017). The other way is miR-140-5P indirect support 
miRwith maintaining the expression level of tumor suppressor genes via 
targeting DNMT1 and HDAC4 genes which consequently preventing of 
DNA methylation and histones deacetylation (Takata et al., 2013; Zhang 
et al., 2015). Our prediction for the results of miR-140-5P expression 
behavior was in favor of decreasing expression miRin tumor specimens 
but, in contrary to our prediction and other previous studies (Zhang 
et al., 2018b), the expression change was in favor of multiple-fold 
increaseit. Our prediction regarding the increased expression level of 
DNMT1 (Zhang et al., 2018b) and HDAC4 (Giaginis et al., 2014) in result 
of miR-140-5P decrease was also not realized and we did not observe 
any significant changes in the expression level of these genes. 

Our attempts to understand and explanation of the reasons of these 
unexpected results guided us to regulatory mechanism of miR-140 
transcription. The transcription level of mir-140 is potentially regu
lated in two ways: one way is through its position within the WWP2 gene 
(WW domain-containing E3 ubiquitin-protein ligase 2) which affected 
by the promoter of WWP2 gene; and the other way is through its dedi
cated promoter in intron 10 (Li et al., 2018). WWP2 gene is a member of 
the NEDD4-like protein family, which is recognized by the ubiquitin 
ligase activity (Liu et al., 2019; Yang et al., 2013). This gene is expressed 
higher than average in the thyroid tissues (Kai et al., 2014) and its proto- 
oncogenic role in other cancers such as liver (Su et al., 2016), lung (Yang 
et al., 2011), and ovarian cancer (Zhao et al., 2010) has also been re
ported. The WWP2 gene promoter and the mir-140 gene-specific pro
moter are both affected by a common transcription factor, SOX9 (SRY- 
box transcription factor 9) (Li et al., 2018; Bernassola et al., 2008; Uhlen 
et al., 2015), which plays an important role in controlling cell prolifer
ation (Qin et al., 2016). Nevertheless, SOX9 has conflicting roles in a 
variety of malignancies. For instance, it has been reported as a tumor 
suppressor in melanoma and bladder cancers (Yang et al., 2016; Jung 
et al., 2014) while, in other groups, such as breast, glioma, and thyroid, 
it acts as a tumor-promoting agent (Yamashita et al., 2012; Miyaki et al., 
2010; Lee and Saint-Jeannet, 2011). 

Based on these findings, the significant increase in miR-140-5P could 

be justified in relation to thyroid progression. But given the well-known 
targets of miR-140-5P which are often included in proto-oncogenes 
group, the tumor-promoting role of this type of miR cannot be defen
ded easily. To justify this paradoxical behavior of miR-140-5P, namely 
upup regulation of miR-140-5P along with its tumor suppressor func
tional mechanism, only the inhibitory simultaneous function of other 
existing and active molecular agents in PTC tumor cells can be referred 
to; factors that inhibit all miRNAs in general, or miR-140-5P in partic
ular. In this respect, a class of long noncoding RNAs (lncRNAs) with 
sponge properties can be mentioned. Among this sponge group for miR- 
140-5P, we can mention HOXA11-AS, SNGH16, and PVT1 All the three 
genes can play oncogenic roles in cancers by reducing the function of 
microRNAs, such as miR-140-5P (Huang and Guo, 2017; Wang et al., 
2012; Yoon et al., 2014) and there are numerous reports have revealed a 
high expression of them in PTC (Li et al., 2014; Ebert and Sharp, 2010; 
Cui et al., 2017). Therefore, neutralizing the inhibitory and preventive 
effect of such high concentration of miR-140-5P in PTC tumor samples 
can be related to the high concentration of HOXA11-AS, SNGH16, and 
PVT1 sponges in PTC cells. But what is clear is that the simultaneous 
study of the expression behavior of these genes along with miR-140-5P 
transcription can provide a clearer picture of miR-140-5P role in PTC. 

5. Conclusion 

In the end, it is necessary to mention a few points. The first one is 
that, given the lack of previous studies on the expression of this gene 
(miR-140-5P) in thyroid tumors, it is not still possible to provide a 
definite comment on its inhibitory or tumor-promoting role in thyroid 
tumors. The second point refers to the increased expression of miR-140- 
5P in PTC tissue, and no significant changes in the expression of DNMT1 
and HDAC4 genes in the tumor group compared to the control group and 
the failure to fulfill the initial hypothesis that miR-140-5P is involved in 
thyroid cancer. The third point to be regarded is the hypothetical model 
proposed in relation to the inhibitory role of sponges, which necessarily 
requires rigorous experimental-laboratory studies and studies with a 
large population. 

Fig. 1. The relative expression of miR-140-5Pshows increase in PTC tumor samples, but there are no statistically significant changes in the relative expression of 
DNMT1 and HDAC4 genes. 
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