

Modeling of arsenic removal from aqueous solution by means of MWCNT/alumina nanocomposite

Hamid Zarei^a, Simin Nasseri^{a,b}, Ramin Nabizadeh^a, Farzaneh Shemirani^c, Arash Dalvand^d, Amir Hossein Mahvi^{a,e,f,*}

^aDepartment of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran, Tel. +98 912 321 18 27; Fax: +98 21 66744339; emails: ahmahvi@yahoo.com (A.H. Mahvi), hamidz_14@yahoo.com (H. Zarei), naserise@tums.ac.ir (S. Nasseri), rnabizadeh@tums.ac.ir (R. Nabizadeh)

^bCenter for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran ^cDepartment of Chemical Engineering, Faculty of Chemical Engineering, University of Tehran, Tehran, Iran, email: shemiran@khayam.ut.ac.ir ^dEnvironmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran, email: arash.dalvand@gmail.com ^cCenter for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran

^eCenter for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran ^fNational Institute of Health Research, Tehran University of Medical Sciences, Tehran, Iran

Received 7 March 2015; Accepted 30 November 2016

ABSTRACT

In this study, response surface methodology (RSM) was employed for investigating the removal of As(V) from aqueous solution using multiwalled carbon nanotube (MWCNT)/alumina nanocomposite. The synthesized nanocomposite was characterized by scanning electron microscopy and X-ray diffraction. For conducting the experiments, four independent variables of initial As(V) concentration ranging from 0.1 to 0.9 mg L⁻¹, pH 3–11, contact time ranging from 15 to 1,450 min and adsorbent dose 0.5–1.5 g L⁻¹ were selected and consecutively coded as X_1 , X_2 , X_3 , and X_4 at three levels (–1, 0, and 1). A second-order polynomial regression model was then applied to predict responses. Regression analysis showed good fit of the experimental data to the second-order polynomial model with R^2 value of 0.9409 indicates the high correlation 0.5 mg L⁻¹, pH 7, contact time 80 min, and adsorbent dose 1 g L⁻¹, the As(V) removal efficiency was about 99.4%. This study proved that Box–Behnken design under RSM could efficiently be applied for modeling of As(V) removal by MWCNT/alumina nanocomposite.

Keywords: As(V) removal; Box-Behnken design; MWCNT/alumina nanocomposite

* Corresponding author.

1944-3994/1944-3986 © 2017 Desalination Publications. All rights reserved.