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In this series of laboratory experiments, the feasibility of using fixed bed biofilm carriers (FBBC) manufactured
from existing reclaimed waste tires (RWTs) for wastewater treatment was evaluated. To assess polyamide yarn
waste tires as a media, the fixed bed sequence batch reactor (FBSBR) was evaluated under different organic
loading rate (OLRs). An experimental model was used to study the kinetics of substrate consumption in biofilm.
Removal efficiency of soluble chemical oxygen demand (SCOD) ranged by 76-98% for the FBSBR compared to
71-96% in a sequencing batch reactor (SBR). Removal efficiency of FBBC was significantly increased by in-
oculating these RWTs carriers. The results revealed that the sludge production yield (Y,ys) was significantly less
in the FBSBR compared to the SBR (p < 0.01). It also produced less sludge and recorded a lower stabilization
ratio (VSS/TSS). The findings show that the Stover-Kincannon model was the best fit (R% > 99%) in a FBSBR.
Results from this study suggest that RWTs to support biological activity for a variety of wastewater treatment
applications as a biofilm carrier have high potential that better performance as COD and TSS removal and sludge
settling properties and effluent quality supported these findings.

1. Introduction

Scrap tires are a major environmental problem worldwide. The
current scrap tire recycling market is too small compared to the annual
number of waste tires generated globally (17 million T) (Herrera-Sosa
et al., 2015; Mehdiabadi et al., 2013). Waste tires are nearly non-de-
gradable and take up large landfill space. If not properly disposed of,
they can hold water that provides a breeding ground for mosquitos and
facilitate the spread of mosquito-borne disease. It is essential to develop
new markets for waste tires (Lin et al., 2008; Selbes et al., 2015).

An improper management of waste tires, as the combustion, un-
fortunately still a common phenomenon and it produces serious air,
water, and soil pollution issues (Sciacca and Conti, 2009; Derakhshan
et al., 2017; Oliveri Conti et al., 2017a; Dehghani et al., 2017; Oliveri

Conti et al., 2017b); however, waste tire has a high heat value and is
used as supplemental fuel in cement kilns and paper mills (Chyan et al.,
2013; Naz et al., 2014). Waste tires can also be recycled as: roadway
pavement material, refuse-derived fuel, or reproduced as tires, but also
to produce rubber mats, roadway guard rails, protective cushions or
bumpers, and building materials (Gupta et al., 2014). In marine ap-
plications, they are used as a wave breaking material, ship/dock pro-
tective bumpers, and to construct artificial reefs in the offshore fish
farming industry (Lin et al., 2008). Nevertheless, these markets are
small compared to the number of tires generated each year. It is of great
interest to explore new applications/markets for the scrap tire industry
(Herrera-Sosa et al., 2015; Lin et al., 2008).

Among the biological technologies, the sequencing batch reactor
(SBR) is unique for its flexible operation, compact structure and simple
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construction (Kulkarni, 2013; Mahvi et al., 2011; Takdastan et al.,
2009). But also, the hybrid system combining suspended and biofilm
process to realize the compact structure and flexible operation with
high efficiency is well accepted in current literature (Mahvi, 2008;
Maranon et al., 2008; Rodriguez et al., 2011; Santos and Boaventura,
2015).

Among the hybrid process, FBSBR method is an effective method for
the wastewater treatment for its high efficiency in organic material's
deletion by wastewater and it is able to quickly reduction the biode-
gradable organic materials. A highest use of this system is justified by
more stringent provisions to the higher quality for output wastewater
finalized to protect and preserve the resources water. Several studies
have proven that FBSBR possesses attractive properties such as high
biomass, high chemical oxygen demand (COD) loading, strong toler-
ance of loading, and no sludge bulking problem (Santos and
Boaventura, 2015). The FBSBR can maximize sludge retention time
(SRT) in the biofilm and has the potential for operating a suspended
activated sludge system with a relatively short hydraulic retention time
(HRT). Moreover, in FBSBR, microorganisms with different SRTs can be
developed in a single reactor (Chen et al., 2015; Moghaddam and
Sargolzaei, 2015; Santos and Boaventura, 2015).

Several materials have been tested as carriers (media) in sequencing
batch biofilm reactors. Soltani et al. (2013) investigated the effects of
peach pits as media on the efficiency of a fixed-bed sequencing batch
reactor (FSBR). Their study showed that when organic loading was
12 kgcop/m>.d, organic matter removal in the FSBR and SBR reactors
was 71.84% and 56.57%, respectively, and SRT decreased from 40 to
19.8 d (Soltani et al., 2013). Dutta et al. (2014) studied the effects of
granular activated carbon and natural zeolite as attached carriers in
anaerobic sequencing batch biofilm reactors and showed that the ad-
dition of carriers improved both the COD removal efficiency and biogas
production. A summary of researches on the sequencing batch biofilm
reactors is presented in Table 1.

The main objective of present study was to explore the feasibility of
using reclaim waste tires (RWTs) as a suitable media for biological
growth and biofilm development in wastewater treatment system. More
specifically, the study focused on using RWTs as a biofilm carrier in
FBSBRs. In addition, the possibility of an alternative form of recycling
of RWTs was also evaluated.

2. Materials and methods

Two reactors (SBR and FBSBR) were powered in parallel, under the
same conditions, to determine the effectiveness of RWTs as a media for
biological removal of organic carbon, to improve sludge quality, and
reduce sludge production yield.

2.1. Preparation of media

The RWTs were obtained from Yazd Tire Company. The RWTs were
measured using a ruler to determine the approximate average size.
Physicochemical characterization studies were performed to verify the
chemical resistance of the novel biofilm carrier by placing it in glass
beakers containing tap water, acidic (pH = 4.9), and basic (pH = 9.2)
solutions for 30 days. The media were then removed from the solution,

Table 1
Estimated Efficiency of some researches on fixed-bed sequencing batch reactors.
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Fig. 1. Schematics of SBR and FBSBR. 1- Feed Tank, 2- Mixer, 3- Heater, 4- Control
Unit, 5- Peristaltic Pump, 6- Feed Control Valve. 7- Decanter(Sampling) Valve, 8-
Discharge Sludge Port, 9- Novel Packing Media, 10-Air compressor, 11- FBSBR Reactor,
12- SBR Reactor.

rinsed repeatedly with distilled water, dried in an oven at 60 °C for
24 h, cooled in a desiccator, and then reweighed (Natarajan et al.,
2015). Weight loss of 1.8% and 2.5% were recorded for samples placed
in acidic and basic solutions, respectively.

2.2. Experimental set-up and operating conditions

The experiment was carried out in the SBR and FBSBR at a total
volume of 4.7 1, a diameter of 0.1 m, and a height of 0.6 m (Fig. 1). In
the FBSBR, RWTs with a porosity of 90%, specific surface area of
~370 m? m® and a total volume of 2 1 (40%) were fixed to the bottom of
the reactor.

2.3. Pilot start-up

Activated sludge from the Yazd wastewater treatment plant was
used to seed the pilot start-up at a volume of ~3.51 per reactor and a
COD of 500 + 7.54 mg/l. The floc was established over 3 wk. of aera-
tion and reaction. At this stage, food was added each day. The COD,
dissolved oxygen (DO), pH, and temperature of the wastewater were
recorded and compared with the results of samples collected at 3 wk.
after pilot start-up. The effluent's COD values were similar to each
other, which indicates the end of the start-up period. Biofilm had also
formed on the media in the FBSBR.

The exchangeable volume of each reactor was 2 1. The reactors were
maintained at a fixed temperature of 30 + 2.4 °C (average temperature
of Yazd from January through June is 30°C) using a thermo-
staticheater. The reactors were operated in cycles of 10, 8, 6 and 4 h.
The system was controlled using the timer switches (Theben; Germany).

Each cycle comprised 4 phases.

Type of reactor Media

Environment Efficiency (%) Reference

Anaerobic/aerobic fixed-bed sequencing batch biofilm reactor

Volcanic pumice stone

Synthetic wastewater 92-94 (Hosseini Koupaie et al., 2013)

Plastic media (polyethylene) 95-96

FBSBR
SBBR Fibrous carrier
Sequencing batch reactor biofilm

Plastic media (polyethylene)

Polypropylene carriers

Synthetic wastewater 90-96
Synthetic wastewater 90-95
Wastewater 95

(Rahimi et al., 2011)
(Zhang et al., 2009)
(Yin et al., 2015)
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Table 2
Chemical composition of used synthetic wastewater (Baghapour et al., 2013; Nasseri
et al., 2014).

Component Concentration (mg/L)
Sodium acetate (NaCOOH) 100-200

Ammonium sulfate ((NH4),SO,4) 150-700

Potassium phosphate(KH,PO,4) 150-600

Calcium chloride (CaCl,2H,0) 0.37

Magnesium sulfate (MgSO47H,0) 5

Manganese chloride (MnCly4H,0) 0.28
Zinc sulfate (ZnSO4,7H,0) 0.45
Anhydrous Iron chloride (FeCls) 1.45
Copper sulfate (Cu,SO4-5H,0) 0.4
Cobalt chloride (CoCl,6H,0) 0.4
Sodium molybdate (Na,Mo0O42H,0) 1.25
Sodium Bicarbonate (NaHCO3) 20

Sucrose (C;2H25011) Variable (100-800)

o In phase 1, the reactor was continuously fed for 15 min

e In phase 2, the reactor was aerated for 525, 405, 285 and 165 min,
depending on cycle duration.

e In phase 3, settling occurred for 45 min

e In phase 4, effluent was discharged for 15 min

Fluctuations in pH were controlled using 0.5 mol/l sodium bi-
carbonate for an operational pH of 7.31 + 0.32.

Testing was conducted using synthetic wastewater at concentrations
of 500 = 4.1, 1000 = 8.2, 1500 * 5.6, and 2000 *+ 4.1 mgcop/l to
avoid fluctuations in the feed concentration, provide a continuous
source of biodegradable organic carbon, and simulate domestic waste-
water (low to high strength). The constituents of the synthetic waste-
water are given in Table 2.

The reactors were acclimatized for about 21 d priorto monitoring.
Synthetic wastewater was fed into both reactors with a pump.
Decantation to remove supernatant was carried out from electric valves.
Air was supplied by an electromagnetic blower (Resun; model ACO-
018; China) and air diffusers were controlled by a DO meter (MI-65;
Martini Instruments). To prevent interference from light (photo-
catalysis) and algae growth, the columns were covered with aluminum
foils. The operational scheme of the system for 16 phases (runs) is
shown in Tables 3, 4. The FBSBR was operated at 4 HRTs using mu-
nicipal sewage from Yazd (COD 539 = 16.6 mg/1, BODs
241 = 7.81 mg/l, pH 7.83 £0.37 and temperature
34.8 + 4.21 °C) to assess the ability of this system under real condi-
tions.

Table 3
Operational scheme of runs at 30 °C in FBSBR.

Run  Cycle time (hr) Initial conc. of SCOD (mg/L) DO (mg/L) pH

1 10 500 * 4.783 4.378 + 0.483 7.048
2 1000 * 6.495 4.342 = 0.122  7.261
3 1501 * 6.509 4.724 £ 0.214  7.205
4 2002 + 4.408 4.385 + 0.102 7.317
5 8 502 * 3.927 4.213 £ 0.127 7.443
6 998 + 6.647 4.427 £ 0.118  7.427
7 1500 * 5.692 4.349 £ 0.107  7.192
8 1999 + 5.209 4.302 + 0.209 7.133
9 6 500 + 4.11 4.342 £ 0.189  7.507
10 1003 * 8.98 4.403 £0.134 7.291
11 1498 + 5.43 4.216 + 0.235 7.327
12 2000 + 4.44 4.291 = 0.397  7.306
13 4 499 + 4.08 4.276 = 0.462  7.174
14 997 +9.15 4.437 £0.267  7.352
15 1500 + 5.60 4.346 + 0.309 7.016
16 2000 + 3.25 4.218 £ 0.421  6.981
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Table 4
Operational scheme of runs at 30 °C in SBR.

Run Cycle time (hr) Initial conc. of SCOD (mg/L) DO (mg/L) pH

1 10 500 * 4.783 4.328 +£0.147  7.146
2 1000 * 6.495 4.422 + 4,422 7.142
3 1501 = 6.509 4.205 + 0.119 7.260
4 2002 * 4.408 4.163 = 0.145  7.221
5 8 502 * 3.927 4.299 + 0.144  7.319
6 998 =+ 6.647 4.344 £ 0.146 7.380
7 1500 *+ 5.692 4.248 +0.132  7.339
8 1999 * 5.209 4.420 £ 0.152  7.124
9 6 500 + 4.11 4.275 £ 0.131 7.267
10 1003 + 8.98 4.231 £ 0.110  7.297
11 1498 + 5.43 4.284 +0.123  7.258
12 2000 = 4.44 4.191 £ 0.119  7.415
13 4 499 + 4.08 4.212 + 0.119 7.408
14 997 + 9.15 4.316 £ 0.139  7.276
15 1500 *+ 5.60 4.276 = 0.161  7.378
16 2000 * 3.25 4.322 + 0.104 7.362

2.4. Analytical methods

All results were obtained from the bioreactors at steadystate. The
supernatant from one complete cycle was collected in a container and
the mixed liquor was sampled at the end of aeration time. The DO
concentration was measured using a DO meter (MI-65; Martini
Instruments) and the pH using a pH meter (HACH; Germany). COD was
measured using a spectrophotometer (DR-2000; HACH; Germany). The
mixed liquor suspended solids (MLSS), total suspended solids (TSS),
volatile suspended solids (VSS), and COD content were determined
using standard methods for the examination of water and wastewater
(APHA, 2007).

The parameters measured were SCOD, pH, DO, MLSS, VSS, TSS and
temperature. At a specific run, the pH, DO, and temperature were
measured of each sample. These parameters were included in the list of
measurements to ensure the proper operation of the system and the
stability of the reactors. The data presented is the average of minimum
2 times replicates and the figures were drawn by using Excel and
MATLAB.

2.5. Scanning electron microscopy

The biomass attached to the media was analyzed by scanning
electron microscopy (SEM) from samples taken at the end of testing.
The samples were prepared by fixing with 2.5% glutaraldehydein 0.1 M
phosphate buffer at pH 7.2 at 4 °C overnight. They were then dehy-
drated with ethanol from 60% to 100% at 20% increments for 10 min
ateach concentration. The samples were then dried at critical point
(equilibrium between gas and liquid phase of CO,), mounted, coated
with gold, and examined by SEM (Dutta et al., 2014; Naz et al., 2014).

2.6. Modeling

Biological and mathematical models were used to determine re-
lationship between the variables and evaluate the experimental results.
The models were also used to monitor and predict performance and
optimize plant build at bench and pilot scales. It was confirmed that the
criterion for biological growth system design was the volumetric or-
ganic load (VOL). The rate of substrate removal was obtained using the
hyperbolic relations of the Stover-Kincannon function (Eq. (1)):

Bscop

rscop = Fmax
k + Bscop

(€]
where rgcop is the volumetric SCOD removal, 1y, is the maximum rate
of volumetric SCOD removal, Bscop is the SCOD load per unit volume of
the reactor, and k is the constant of half velocity. All the parameters are
in kgscop/m>d. Bscop and rscop Were obtained as:
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Table 5 0.7
Comparison of reactors. b 4
0.6 4
Parameter SCOD SVI Yield VSS/TSS S
0.5 -
Sig. (2-tailed) 0.023 0.137 < 0.01 0.033 8
Correlation is significant at the 0.05 level (2-tailed). 0
< 04 -
72}
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Fig. 2. SCOD removal in FBSBR.
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rscop = %(Ci - C)

where C; is the SCOD concentration in the influent (kgSCOD/m3) and k is
the SCOD concentration in the effluent (kgSCOD/mB) (Baghapour et al.,
3 2013; Nasseri et al., 2014). Egs. (2) and (3) and Tables 3, 4 were used to
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Fig. 8. Organic loading of bioreactors for 0-25 gCOD/m®.d at 30 °C.

compute Bgcop and rscop under different conditions. The values for k
and 1,4, Were obtained using Curve Expert software.

3. Results and discussion
3.1. Statistical analysis

The statistical parameters used were mean and standard deviation
(for more than two data points). The nonparametric Mann-Whitney U
test was used in SPSS (version 21) to identify relationships between
reactors (Table 5).

3.2. SCOD removal

COD reduction is one of the most common challenges faced by any
facility that needs to comply with wastewater treatment regulations,
and if it isn’t properly addressed it can result in non-compliance fines.
During system operation, the length of the runs was reduced from 10-8
to 6-4 h. The most important parameters monitored were VSS, TSS, and
SCOD. The trend of SCOD removal in the reactors is shown in Figs. 2
and 3.

3.3. COD removal rate versus COD loading

Both reactors showed high COD removal efficiency at steady state
throughout the study period (Fig. 5); however, no significant differ-
ences were observed at lower organic loading rates. The FBSBR showed
higher COD removal rate at higher loading rates and the best

SEM HV: 15 kV WD: 13.02 mm
View field: 23.2 ym  Yazd University

SEM HV: 15 kV
View field: 23.7 ym

WD: 13.00 mm
Yazd University
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performance at loadings of 0.5-8 kgCOD/ms.d. This indicates that the
microorganisms in the biofilm combined with the suspended growth
sludge in the FBSBR had a greater ability to remove organic carbon and
better resistance to shock loading than the single suspended growth
sludge in the SBR. Similar findings have been reported for biofilm ap-
plication in integrated fixed film activated sludge, a moving bed bior-
eactor, biofilm membrane bioreactor. To better understand the fate of
organic carbon in reactors, the initial COD concentration and retention
time were plotted versus COD removal efficiency. Fig. 4 shows that the
initial COD concentration positively affected FBSBR performance. This
is likely the result of the increase in exposure of the microbial con-
sortium to the contaminants.

3.4. Sludge quantity and quality

3.4.1. Sludge production yield

The sludge production yield versus organic loading rate in the
FBSBR and SBR is shown in Fig. 5. Analysis (Table 6) revealed that the
biomass production rate (Yops) in the FBSBR was significantly lower
than in the SBR (p < 0.01). Y, varied from 0.22 to 0.53 kgss/kgcop in
the SBR and 0.16-0.47 kgss/kgcop in the FBSBR. This means that the
sludge production rate was lower in the FBSBR than SBR. This can be
attributed to the high cell retention time in the biofilm and to the
dissolved oxygen and substrate gradient in the biofilm layer that caused
endogenous respiration.

3.4.2. Sludge volume index

Both FBSBR and SBR showed good settling characteristics.
Statistical analysis (Table 6) showed no significant difference between
reactors in terms of the sludge volume index (SVI) (p > 0.05). The SVI
for the FBSBR was 83.78-143.61 ml/mg and for the SBR was
80.81-148 ml/mg.

3.4.3. Sludge stabilization ratio

The sludge stabilization ratio (VSS/TSS) varied from 0.67 to 0.89 in
the SBR and 0.64-0.82 in the FBSBR. VSS/TSS with the loading rates
are shown in Fig. 6.

It can be seen that biofilm plays a very important role in the sludge
stabilization ratio. Statistical analysis showed that VSS/TSS in the
FBSBR was significantly lower than in the SBR (p < 0.05). This can be
attributed to the higher solid retention in the FBSBR than in the SBR.
The effect of SRT on sludge stabilization has been proven. VSS/TSS is
inversely related to SRT.

3.5. Modeling of data

The values for k and r,,,,, were obtained using Curve Expert software

Fig. 9. SEM images of a sample of virgin surfaces of
RWTs (left) and RWTs after biofilm formation
(right).
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Fig. 10. Effect of initial COD concentration and HRT on COD removal efficiency in FBSBR.
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Fig. 11. Effect of initial COD concentration and HRT on COD removal efficiency in SBR.

and are presented in Table 6.

Figs. 7 and 8 show modeling of the data from the reactors. The
figures and Table 6 indicate that the data obtained from the reactors
was a good fit (R? > 99%), but that the FBSBR had greater potential for
removal organic carbon from aquatic environment. This is related to the
growth of biofilm on the media.

3.6. Biofilm morphology

Biofilm is a metabolically active matrix of cells and extracellular
compounds. The SEM photographs of biofilm grown on surfaces of the
packing media are shown in Fig. 9. A large variety of bacteria were
observed in all samples. The increase in density was a result of both
colonization and growth dense cell clumping. Microorganisms colo-
nized a significant portion of the surface, which can be attributed to the
mixture of a bacterial layer and embedded particles.

The potential for removal of the organic load by the SBR and FBSBR
was evaluated at different SCOD concentrations and HRTs. Both re-
actors showed acceptable SCOD removal efficiencies in all experiments.
Figs. 10 and 11 showed the effect of the initial concentration and HRT
on reactor efficiency. It can be seen in the SBR that SCOD efficiency
decreased as the organic load increased. In the FBSBR, it decreased
2-4% when the COD concentration increased to 1500 mg/1, but after
adaptation, efficiency again increased with as the COD concentration
increased.

3.7. COD removal efficiency of real wastewater

The results of FBSBR process with real sewage is shown in Fig. 12.
As seen, WHO output standards for COD influent (60 mg/1) (Mahvi
et al., 2009) at 10 and 8 h were achieved with 93.93% and 90.87%
efficiency, respectively; however, technical and economic aspects of
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600

COD removal efficiency (%)
COD concentration (mg/L)

[ 5]

Time (h)

this reactor's process indicates that the optimum operation time for the
FBSBR for local usage is 8 h.

4. Conclusion

The results suggest that the addition of carriers improved COD re-
moval efficiency. We showed the high potential of RWTs to support
biological activity for a variety of wastewater treatment applications.
SEM analysis results showed that a greater amount of biomass was at-
tached to the RWTs. Both bioreactors showed excellent performance for
organic substance removal; however, the FBSBR was more efficient
than the SBR at higher organic loading rates. The sludge production
rate for the FBSBR was lower (13% to 29%) than for the SBR and the
excess sludge better stabilized, meaning that the FBSBR sludge has
greater potential for use as fertilizer. Finally, we showed that this
process represent a good alternative for the reuse of RWTs.
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